Advertisement

Fracturing in Dry and Saturated Porous Media

  • Enrico Milanese
  • Toan Duc Cao
  • Luciano Simoni
  • Bernhard A. Schrefler
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 46)

Abstract

It is now generally recognized that mode I fracturing in saturated geomaterials is a stepwise process. This is true both for mechanical loading and for pressure induced fracturing. Evidence comes from geophysics, from unconventional hydrocarbon extraction, and from experiments. Despite the evidence only very few numerical models capture this behavior. From our numerical experiments, both with a model based on Standard Galerkin Finite Elements in conjunction with a cohesive fracture model, and with a truss lattice model in combination with Monte Carlo simulations, it appears that already in dry geomaterials under mechanical loading the fracturing process is time discontinuous. In a two-phase fracture context, in case of mechanical loading, the fluid not only follows the fate of the solid phase material and gives rise to pressure peaks at the fracturing event, but it also influences this event. In case of pressure induced fracture clearly pressure peaks appear too but are of opposite sign: we observe pressure drops at fracturing. In mode II fracturing, the behavior is brittle while in mixed mode there appears a combination of pressure rises and drops.

Notes

Acknowledgements

B.A. Schrefler acknowledges the support of the Technische Universität München—Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Program under grant agreement no. 291763.

References

  1. 1.
    J. Adachi, E. Siebrits, A. Peirce, J. Desroches, Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 44, 739–757 (2007)CrossRefGoogle Scholar
  2. 2.
    S.H. Advani, T.S. Lee, R.H. Dean, C.K. Pak, J.M. Avasthi, Consequences of fluid lag in three-dimensional hydraulic fracture. Int. J. Numer. Anal. Methods Geomech. 21, 229–240 (1997)CrossRefGoogle Scholar
  3. 3.
    I. Babuska, Error-bounds for finite element method. Numer. Math. 16(4), 322–333 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    G.C. Beroza, S. Ide, Deep tremors and slow quakes. Science 324(5930), 1025–1026 (2009)CrossRefGoogle Scholar
  5. 5.
    G.C. Beroza, S. Ide, Slow earthquakes and nonvolcanic tremor. Annu. Rev. Earth Planet. Sci. 39, 271–296 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Black et al., DEA 13 (phase 2) Final Report (Volume 1). Investigation of Lost Circulation Problem with Oil-Base Drilling Fluids. Mar. 1988. Prepared by Drilling Research Laboratory, Inc.Google Scholar
  7. 7.
    T.J. Boone, A.R. Ingraffea, A numerical procedure for simulation of hydraulically driven fracture propagation in poroelastic media. Int. J. Numer. Anal. Methods Geomech. 14, 27–47 (1990)CrossRefGoogle Scholar
  8. 8.
    F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Francaise d’autom., inform. rech. opér.: Anal. Numér. 8 (2) 129–151 (1974)Google Scholar
  9. 9.
    A.P. Bunger, E. Gordeliy, E. Detournay, Comparison between laboratory experiments and coupled simulations of saucer-shaped hydraulic fractures in homogeneous brittle-elastic solids. J. Mech. Phys. Solids 61, 1636–1654 (2013)CrossRefGoogle Scholar
  10. 10.
    A.P. Bunger, E. Detournay, Experimental validation of the tip asymptotics for a fluid-driven crack. J. Mech. Phys. Sol. 56, 3101–3115 (2008)CrossRefGoogle Scholar
  11. 11.
    L. Burlini, G. Di Toro, P. Meredith, Seismic tremor in subduction zones: Rock physics evidence. Geoph. Res. Lett. 36, L08305 (2009). doi: 10.1029/2009GL037735 CrossRefGoogle Scholar
  12. 12.
    L. Burlini, G. Di Toro, Volcanic symphony in the lab. Science 322, 207–208 (2008)CrossRefGoogle Scholar
  13. 13.
    T.D. Cao, E. Milanese, E.W. Remij, P. Rizzato, J.J.C. Remmers, L. Simoni, J.M. Huyghe, F. Hussain, B.A. Schrefler, Interaction between crack tip advancement and fluid flow in fracturing saturated porous media. Mech. Res. Commun. 80, 24–37 (2017)Google Scholar
  14. 14.
    B. Carrier, S. Granet, Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng. Fract. Mech. 79, 312–328 (2012)CrossRefGoogle Scholar
  15. 15.
    B.J. Carter, J.Desroches, A.R.Ingraffea and P.A.Wawrzynek, Simulating fully 3-D hydraulic fracturing, in Modeling in Geomechanics, ed. by Zaman, Booker and Gioda (Wiley, Chichester, 2000), pp. 525–567Google Scholar
  16. 16.
    B. Cesare, Synmetamorphic veining: origin of andalusite-bearing veins in the Vedrette di Ries contact aureole, Eastern Alps, Italy. J. Metamorphic. Geol. 643–653 (1994)Google Scholar
  17. 17.
    M.P. Cleary, Moving singularities in elasto-diffusive solids with applications to fracture propagation. Int. J. Solids and Struct. 14, 81–97 (1978)CrossRefzbMATHGoogle Scholar
  18. 18.
    S.F. Cox, Faulting processes at high fluid pressures: an example of fault valve behavior from the Wattle Gully Fault, Victoria, Australia. J. Geophys. Res. 100, 12841–12859 (1995)CrossRefGoogle Scholar
  19. 19.
    C.J. de Pater, Hydraulic Fracture Containment: new insights into mapped geometry SPE, in Hydraulic Fracturing Technology Conference held in The Woodlands, Texas, USA, 3–5 Feb. 2015, paper SPE-173359-MS, 2015Google Scholar
  20. 20.
    E. Detournay, A.H. Cheng, Plane strain analysis of a stationary hydraulic fracture in a poroelastic medium. Int. J. Solids Struct. 27, 1645–1662 (1991)CrossRefzbMATHGoogle Scholar
  21. 21.
    E. Detournay, J.I. Adachi, D.I. Garagash, Asymptotic and intermediate asymptotic behavior near the tip of a fluid-driven fracture propagating in a permeable elastic medium, in Structural Integrity and Fracture, ed. by Dyskin, Hu & Sahouryeh (eds.), Lisse, ISBN: 905809 5134, (2002), 9–18 Swets & ZeitlingerGoogle Scholar
  22. 22.
    E. Detournay, D.I. Garagash, The near-tip region for a fluid-driven fracture propagating in a permeable elastic solid. J. Fluid Mech. 494, 1–32 (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Y. Feng, K.E. Gray, Parameters controlling pressure and fracture behaviors in field injectivity tests: A numerical investigation using coupled flow and geomechanics model. Computers and Geotechnics 87, 49–61 (2017)Google Scholar
  24. 24.
    D. Garagash, E. Detournay, The tip region of a fluid-driven fracture in an elastic medium. J. Appl. Mech. 67, 183–192 (2000)CrossRefzbMATHGoogle Scholar
  25. 25.
    D.I. Garagash, E. Detournay, J.I. Adachi, Multiscale tip asymptotics in hydraulic fracture with leak-off. J. Fluid Mech. 669, 260–297 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    L. Girard, D. Amitrano, J. Weiss, Failure as a critical phenomenon in a progressive damage model, J. Statistic. Mech., P010143 (2010)Google Scholar
  27. 27.
    P. Grassl, C. Fahy, D. Gallipoli, S.J. Wheeler, On a 2D hydro-mechanical lattice approach for modelling hydraulic fracture. J. Mech. Phys. Solids 75, 104–118 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Y. Heider, B. Markert, A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech. Res. Commun. 80, 38–46 (2017)CrossRefGoogle Scholar
  29. 29.
    N.C. Huang and S.G. Russel, Hydraulic fracturing of a saturated porous medium–I: General theory. Theoret. Appl. Fract. Mech. 4, 201–213 (1985)Google Scholar
  30. 30.
    N.C. Huang and S.G. Russel, Hydraulic fracturing of a saturated porous medium–II: Special cases. Theoret. Appl. Fract. Mech. 4, 215–222 (1985)Google Scholar
  31. 31.
    F. Kraaijeveld, J.M.R.J. Huyghe, Propagating cracks in saturated ionized porous media in Multiscale Methods in Computational Mechanics. (Springer Netherlands, 2011), pp. 425–442Google Scholar
  32. 32.
    F. Kraaijeveld, J.M.R.J. Huyghe, J.J.C. Remmers, R. de Borst, 2-D mode one crack propagation in saturated ionized porous media using partition of unity finite elements, Olivier Coussy Memorial issue. J. Applied Mech. Trans. ASME 80(2), 020907 (2013)CrossRefGoogle Scholar
  33. 33.
    C.Y. Lai, Z. Zheng, E. Dressaire, J.S. Wexler, and H. A. Stone. Experimental study on penny-shaped fluid-driven cracks in an elastic matrix. in Proc. R. Soc. A, 471 (2015), page 2015025. The Royal SocietyGoogle Scholar
  34. 34.
    B. Lecampion, E. Detournay, An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag. Comp. Methods Appl. Mech. Eng. 196(49–52), 4863–4880 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    B. Lecampion, A. Bunger, J. Kear, D. Quesada, Interface debonding driven by fluid injection in a cased and cemented wellbore: modeling and experiments. Int. J. Greenhouse Gas Control 18, 208–223 (2013). doi: 10.1016/j.ijggc.2013.07.012 CrossRefGoogle Scholar
  36. 36.
    S. Lee, M.F. Wheeler, T. Wick, S. Srinivasan, Initialization of phase-field fracture propagation in porous media using probability maps of fracture networks. Mech. Res. Commun. 80, 16–23 (2017)CrossRefGoogle Scholar
  37. 37.
    R.W. Lewis, B.A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (Wiley, Chichester, 1998)zbMATHGoogle Scholar
  38. 38.
    T.P.Y. Lhomme, Initiation of Hydraulic Fractures in Natural Sandstones (Delft University of Technology, TU Delft, 2005)Google Scholar
  39. 39.
    T.P.Y. Lhomme, C.J. de Pater, P.H. Helferich, Experimental study of hydraulic fracture initiation in Colton Sandstone, SPE/ISRM 78187, SPE/ISRM Rock Mechanics Conference, Irving, Texas, (2002)Google Scholar
  40. 40.
    S. Mauthe, C. Miehe, Hydraulic fracture in poro-hydro-elastic media. Mech. Res. Commun. 80, 69–89 (2017)CrossRefGoogle Scholar
  41. 41.
    C. Miehe, S. Mauthe, S. Teichtmeister, Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase-field modeling of fracture. J. Mech. Phys. Solids 82, 186–217 (2015)MathSciNetCrossRefGoogle Scholar
  42. 42.
    A. Mikelic, M.F. Wheeler, T. Wick, A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model. Simul. 13(1), 367–398 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    E. Milanese, O. Yilmaz, J.F. Molinari and B.A. Schrefler, Avalanches in dry and saturated disordered media at fracture, Phys. Rev. E 93, 4, 043002, doi:  10.1103/PhysRevE.93.043002(2016)
  44. 44.
    E. Milanese, P. Rizzato, F. Pesavento, S. Secchi, B.A. Schrefler, An explanation for the intermittent crack tip advancement and pressure fluctuations in hydraulic fracturing. Hydraulic Fract. J. 3, 2, 30–43 (2016)Google Scholar
  45. 45.
    E. Milanese, O. Yilmaz, J.F. Molinari, B.A. Schrefler, Avalanches in dry and saturated disordered media at fracture in shear and mixed mode scenarios. Mech. Res. Commun. 90, 58–68 (2017)CrossRefGoogle Scholar
  46. 46.
    T. Mohammadnejad, A.R. Khoei, Hydromechanical modelling of cohesive crack propagation in multiphase porous media using extended finite element method. Int. J. Numer. Anal. Methods Geomech. 37 1247–1279 (2013)Google Scholar
  47. 47.
    T. Mohammadnejad, A.R. Khoei, An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elements Anal. Design, 73 77–95 (2013)Google Scholar
  48. 48.
    G. Nolet, Slabs do not go gently. Science 324 (5931), 1152–1153 (2009)Google Scholar
  49. 49.
    K. Obara, H. Hirose, F. Yamamizu, K. Kasahara, Episodic slow slip events accompanied by non-volcanic tremors in southwest Japan subduction zone. Geophys. Res. Lett. 31 (23) (2004)Google Scholar
  50. 50.
    M. Obayashi, J. Yoshimitsu, Y. Fukao, Tearing of stagnant slab. Science 324(5931), 1173–1175 (2009)CrossRefGoogle Scholar
  51. 51.
    D. Okland, G.K. Gabrielsen, J. Gjerde, S. Koen, E.L. Williams, The Importance of Extended Leak-Off Test Data for Combatting Lost Circulation. Society of Petroleum Engineers. doi: 10.2118/78219-MS(2002)
  52. 52.
    T.K. Perkins, L.R. Kern, Widths of hydraulic fractures. SPE J. 222, 937–949 (1961)Google Scholar
  53. 53.
    W.J. Phillips, Hydraulic fracturing and mineralization. J. Geol. Soc. Lond. 128, 337–359 (1972)CrossRefGoogle Scholar
  54. 54.
    F. Pizzocolo, J.M.R.J. Huyghe, K. Ito, Mode I crack propagation in hydrogels is stepwise. Eng. Fract. Mech. 97, 72–79 (2013)CrossRefGoogle Scholar
  55. 55.
    E.W. Remij, J.J.C. Remmers, J.M.R.J. Huyghe, D.M.J. Smeulders, The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Eng. 286, 293–312 (2015)MathSciNetCrossRefGoogle Scholar
  56. 56.
    E.W. Remij, J.J.C. Remmers, J.M. Huyghe, D.M.J. Smeulders, An investigation of the step-wise propagation of a mode-II fracture in a poroelastic medium. Mech. Res. Commun. 80 10–15 (2017)
Google Scholar
  57. 57.
    J. Réthoré, R. de Borst, M.A. Abellan, A two-scale approach for fluid flow in fractured porous media. Int. J. Numer. Meth. Eng. 71, 780–800 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    J. Réthoré, R. de Borst, M.A. Abellan, A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. Comput. Mech. 42, 227–238 (2008)CrossRefzbMATHGoogle Scholar
  59. 59.
    J.R. Rice, M.P. Cleary, Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constituents. Rev. Geophs. Space Phys. 14, 227–241 (1976)CrossRefGoogle Scholar
  60. 60.
    B.A. Schrefler, S. Secchi, L. Simoni, Adaptive refinement techniques for cohesive fracture in multifield problems, Proceedings of International Conference on Adaptive Modelling and Simulation (ADMOS), Göteborg, (2003)Google Scholar
  61. 61.
    B.A. Schrefler, S. Secchi, L. Simoni, On adaptive refinement techniques in multifield problems including cohesive fracture. Comp. Methods Appl. Mech. Eng. 195, 444–461 (2006)CrossRefzbMATHGoogle Scholar
  62. 62.
    S.Y. Schwartz, J.M. Rokosky, Slow slip events and seismic tremor at circum-pacific subduction zones, Rev. Geophys., 45, RG3004 (2007)Google Scholar
  63. 63.
    S. Secchi, L. Simoni, An improved procedure for 2D unstructured Delaunay mesh generation. Adv. Eng. Softw. 34(4), 217–234 (2003)CrossRefzbMATHGoogle Scholar
  64. 64.
    S. Secchi, B.A. Schrefler, A method for 3-D hydraulic fracturing simulation. Int. J. Fract. 178, 245–258 (2012)CrossRefGoogle Scholar
  65. 65.
    R.H. Sibson, Crustal stress, faulting and fluid flow, ed. by J. Parnell Geofluids: Origin, Migration and Evolution of fluids in Sedimentary Basins, Geological Soc. Special Publication, vol. 78, pp. 69–84 (1994)Google Scholar
  66. 66.
    L. Simoni, S. Secchi, Cohesive fracture mechanics for a multi-phase porous medium. Eng. Comput. 20, 675–698 (2003)CrossRefzbMATHGoogle Scholar
  67. 67.
    L. Simoni, S. Secchi,·B.A. Schrefler, Numerical difficulties and computational procedures for thermo-hydro-mechanical coupled problems of saturated porous media. Comput. Mech. 43, 179–189 (2008)CrossRefzbMATHGoogle Scholar
  68. 68.
    L. Simoni, B.A. Schrefler, Multi field simulation of fracture. Adv. Appl. Mech. 47, 367–520 (2014)CrossRefGoogle Scholar
  69. 69.
    M.Y. Soliman, M. Wigwe, A. Alzahabi, E. Pirayesh, N. Stegent, Analysis of fracturing pressure data in heterogeneous shale formations. Hydraul. Fract. J. 1(2), 8–12 (2014)Google Scholar
  70. 70.
    M.F. Wheeler, A. Mikelic, T. Wick, A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model. Simul. 13(1), 367–398 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    M.F. Wheeler, T. Wick, W. Wollner, An augmented-Lagrangian method for the phase-field approach for pressurized fractures. Comp. Methods Appl. Mech. Eng. 271, 69–85 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    S. Zapperi, A. Vespignani, H.E. Stanley, Plasticity and avalanche behavior in microfracturing phenomena. Nature 388, 658–660 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Enrico Milanese
    • 4
  • Toan Duc Cao
    • 2
  • Luciano Simoni
    • 1
  • Bernhard A. Schrefler
    • 1
    • 3
  1. 1.Department of Civil, Environmental and Architectural EngineeringPaduaItaly
  2. 2.Center for Advanced Vehicular Systems (CAVS) and Department of Civil and Environmental EngineeringMississippi State UniversityStarkvilleUSA
  3. 3.Institute for Advanced StudyTechnical University MunichMunichGermany
  4. 4.Civil Engineering Institute, Materials Science and Engineering InstituteÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations