Advertisement

Application of the Rigid Finite Element Method to the Simulation of Cable-Driven Parallel Robots

  • Philipp TempelEmail author
  • Andreas Schmidt
  • Bernard Haasdonk
  • Andreas Pott
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 50)

Abstract

Kinematics and dynamics of cable-driven parallel robots are affected by the cables used as force and motion transmitting elements. Flexural rigidity of these cables is of major interest to better understand dynamics of these systems and to improve their accuracy. The approach for modeling spatial cable dynamics, as presented in this paper, is based on the modified rigid-finite element method using rigid bodies and spring-damper elements. With this, a simulation of a planar 3 degrees of freedom cable-driven parallel robot is constructed as a multi-body dynamics model. Under consideration of holonomic constraints and Baumgarte stabilization, a simulation framework for the simulation of cable-driven parallel robots including dynamics of the cables is developed and presented.

Keywords

Parallel kinematics Multi-body dynamics Flexible joints Holonomic systems Model order reduction 

Notes

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/2) at the University of Stuttgart.

References

  1. 1.
    Adamiec-Wójcik, I., Awrejcewicz, J., Brzozowska, L., Drg, L.: Modelling of ropes with consideration of large deformations and friction by means of the rigid finite element method. In: Awrejcewicz, J. (ed.) Applied Non-Linear Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol. 93, pp. 115–137. Springer International Publishing, Cham (2014). doi: 10.1007/978-3-319-08266-0_9 Google Scholar
  2. 2.
    Albus, J.S., Bostelman, R.V., Dagalakis, N.G.: The NIST RoboCrane. J. Res. Nat. Inst. Stand. Technol. 97, 373–385 (1992)CrossRefGoogle Scholar
  3. 3.
    Collard, J.F., Lamaury, J., Gouttefarde, M.: Dynamics modelling of large suspended parallel cable-driven robots. In: 2011 ECCOMAS Thematic Conference on Multibody Dynamics, pp. 1–13 (2011)Google Scholar
  4. 4.
    Flores, P., Pereira, R., Machado, M., Seabra, E.: Investigation on the Baumgarte stabilization method for dynamic analysis of constrained multibody systems. In: Ceccarelli, M. (ed.) Proceedings of EUCOMES 2008, pp. 305–312. Springer, Dordrecht (2008). doi: 10.1007/978-1-4020-8915-2_37 Google Scholar
  5. 5.
    Kozak, K., Zhou, Q., Wang, J.: Static analysis of cable-driven manipulators with non-negligible cable mass. In: IEEE Conference on Robotics, Automation and Mechatronics, vol. 2, pp. 886–891 (2004). doi: 10.1109/RAMECH.2004.1438035
  6. 6.
    Lau, D., Eden, J., Tan, Y., Oetomo, D.: CASPR: a comprehensive cable-robot analysis and simulation platform for the research of cable-driven parallel robots. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3004–3011 (2016). doi: 10.1109/IROS.2016.7759465
  7. 7.
    Michelin, M., Baradat, C., Nguyen, D.Q., Gouttefarde, M.: Simulation and control with XDE and Matlab/Simulink of a cable-driven parallel robot (CoGiRo). In: Pott, A., Bruckmann, T. (eds.) Cable-Driven Parallel Robots. Mechanisms and Machine Science, vol. 32, pp. 71–83. Springer International Publishing, Cham (2015). doi: 10.1007/978-3-319-09489-2_6 CrossRefGoogle Scholar
  8. 8.
    Miermeister, P., Kraus, W., Lan, T., Pott, A.: An elastic cable model for cable-driven parallel robots including hysteresis effects. In: Pott, A., Bruckmann, T. (eds.) Cable-Driven Parallel Robots. Mechanisms and Machine Science, vol. 32, pp. 17–28. Springer International Publishing, Cham (2015). doi: 10.1007/978-3-319-09489-2_2 CrossRefGoogle Scholar
  9. 9.
    Rewieśki, M., White, J.: A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. In: Proceedings of the 2001 IEEE/ACM International Conference on Computer-Aided Design, pp. 252–257. IEEE Press (2001)Google Scholar
  10. 10.
    Verhoeven, R.: Analysis of the workspace of tendon-based Stewart platforms. Ph.D. Thesis. Universität Duisburg-Essen, Duisburg, Germany (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Philipp Tempel
    • 1
    Email author
  • Andreas Schmidt
    • 2
  • Bernard Haasdonk
    • 2
  • Andreas Pott
    • 1
  1. 1.Institute for Control Engineering of Machine Tools and Manufacturing Units (ISW)University of StuttgartStuttgartGermany
  2. 2.Institute for Applied Analysis and Numerical Simulation (IANS)University of StuttgartStuttgartGermany

Personalised recommendations