Advertisement

CAD-Based Parameterization for Adjoint Optimization

  • Marios DamigosEmail author
  • Eugene De Villiers
Chapter

Abstract

Manipulating CAD geometry using primitive components rather than the originating software is typically a challenging prospect. The parameterisation used to define the geometry of a model is often integral to the efficiency of the design. Even more crucial are the relations (constraints) between those parameters that do not allow the model to be under-defined. However, access to these parameters is lost when making the CAD model portable. Importing a standard CAD file gives access to the Boundary Representation (BRep) of the model and consequently its boundary surfaces which are usually trimmed patches. Therefore, in order to connect Adjoint optimization and Computational Fluid Dynamics to the industrial design framework (CAD) in a generic manner, the BRep must be used as a starting point to produce volume meshes and as a means of changing a model’s shape. In this study, emphasis is given firstly, to meshing (triangulation) of a BRep model as a precursor to volume meshing and secondly, to the use of techniques similar to Free Form Deformation for changing the model’s shape.

Notes

Acknowledgements

The work shown here is part of the IODA (Industrial Optimal Design using Adjoint CFD) Project. Research topic: Intuitive interfaces for optimisation parameterisation, constraint definition and automated mesh-to-CAD conversion.

The project leading to this application, has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 642959.

References

  1. 1.
    Han, J., Requicha, A.: Feature recognition from CAD models. IEEE Comput. Graph., 18(2), 80–94 (1998)CrossRefGoogle Scholar
  2. 2.
    Shah, J. J., Anderson, D., Kim, Y. S., Joshi, S.: A Discourse on Geometric Feature Recognition From CAD Models. J. Comput. Inf. Sci. Eng., 1(1), 41 (2001)CrossRefGoogle Scholar
  3. 3.
    Subrahmanyam, S., Wozny, M.: An overview of automatic feature recognition techniques for computer-aided process planning. Comput. Ind., 26(1), 1–21 (1995)CrossRefGoogle Scholar
  4. 4.
    Nowacki, H., Dannenberg, L.: Approximation Methods Used in the Exchange of Geometric Information via the VDA/VDMA Surface Interface. Product Data Interfaces in CAD/CAM Applications, 150–159 (1986)Google Scholar
  5. 5.
  6. 6.
    Mantyla, M. (1988). An introduction to solid modeling. Rockville, MD: Computer Science Press.Google Scholar
  7. 7.
    Stroud, I. (2006). Boundary representation modelling techniques. London: Springer.zbMATHGoogle Scholar
  8. 8.
    TUM Department of Mechanical Engineering, Chair of Aerodynamics and Fluid mechanics. Retrieved from: www.aer.mw.tum.de/en/research-groups/automotive/drivaer
  9. 9.
    Piegl, L., Tiller, W. (1997). The NURBS book. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  10. 10.
    Papadimitriou, D., Giannakoglou, K.: A continuous adjoint method with objective function derivatives based on boundary integrals, for inviscid and viscous flows. Comput. Fluids, 36(2), 325–341 (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Papoutsis-Kiachagias, E., Zymaris, A., Kavvadias, I., Papadimitriou, D., Giannakoglou, K.: The continuous adjoint approach to the k turbulence model for shape optimization and optimal active control of turbulent flows. Eng. Optimiz., 47(3), 370–389 (2014)CrossRefGoogle Scholar
  12. 12.
    Schberl, J.: NETGEN An advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in Science, 1(1) 41–52 (1997)zbMATHCrossRefGoogle Scholar
  13. 13.
    Meagher, D.: Geometric modeling using octree encoding. Comput. Vision Graph, 19(2), 129–147 (1982)Google Scholar
  14. 14.
    Isaac, T., Burstedde, C., Ghattas, O. (2012) : Low-Cost Parallel Algorithms for 2:1 Octree Balance. 2012 IEEE 26th International Parallel and Distributed Processing SymposiumGoogle Scholar
  15. 15.
    Frey, P. J., George, P. L. (2008). Mesh generation: Application to finite elements. London: ISTE.zbMATHCrossRefGoogle Scholar
  16. 16.
    Mavriplis, D. J.: An Advancing Front Delaunay Triangulation Algorithm Designed for Robustness. J. Comput. Phys., 117(1), 90–101 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Tristano, J. R., Owen, S. J., Canann, S. A.: Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition (1998), https://doi.org/10.1.1.36.630
  18. 18.
    Herrmann, L. R.: Laplacian-isoparametric grid generation scheme. J. Eng. Mech. Div-ASCE, 102(5), 749–756 (1976)Google Scholar
  19. 19.
    Cheng, S., Jin, J.: Edge Flips in Surface Meshes. Discrete Comput. Geom., 54(1), 110–151 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Piegl, L., Tiller, W.: Parametrization for surface fitting in reverse engineering. Comput. Aided Design, 33(8), 593–603 (2001)CrossRefGoogle Scholar
  21. 21.
    Varady, T., Martin, R. R., Cox, J.: Reverse engineering of geometric modelsan introduction. Comput. Aided Design, 29(4), 255–268 (1997)CrossRefGoogle Scholar
  22. 22.
    Sederberg, T. W., Parry, S. R.: Free-form deformation of solid geometric models. Comp. Graph., 20(4), 151–160 (1986)CrossRefGoogle Scholar
  23. 23.
    Jameson, A.: Aerodynamic design via control theory. J. Sci. Comput. 3(3), 233–260 September (1988).zbMATHCrossRefGoogle Scholar
  24. 24.
    Pironneau, O.: On optimum design in fluid mechanics. Journal of Fluid Mechanics 64(1), 97–110 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Thvenin, D. and Janiga, G.: Optimization and Computational Fluid Dynamics. Springer Publishing Company, Incorporated, 1st edition, (2008)CrossRefGoogle Scholar
  26. 26.
    Giles, M. B., Duta, M. C., Mller, J.-D., and Pierce, N. A.: Algorithm developments for discrete adjoint methods, (2001).Google Scholar
  27. 27.
    Vishnampet, R., Bodony, D. J., and Freund, J. B.: A practical discrete-adjoint method for high-fidelity compressible turbulence simulations. J. Comput. Phys. 285(C), 173–192 March (2015).MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Giannakoglou, K. C. and Papadimitriou, D. I.: Adjoint Methods for Shape Optimization, 79–108. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).zbMATHGoogle Scholar
  29. 29.
    Giannakoglou, K. C., Papadimitriou, D. I., Papoutsis-Kiachagias, E. M., and Kavvadias, I. S.: Aerodynamic Shape Optimization Using Turbulent Adjoint And Robust Design in Fluid Mechanics, 289–309. Springer International Publishing, Cham (2015).zbMATHGoogle Scholar
  30. 30.
    Othmer, C.: Implementation of a continuous adjoint for topology optimization of ducted flows, 2007 (2007).Google Scholar
  31. 31.
    Othmer, C.: A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. International Journal for Numerical Methods in Fluids 58(8), 861–877 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Papoutsis-Kiachagias, E., Kyriacou, S., and Giannakoglou, K.: The continuous adjoint method for the design of hydraulic turbomachines. Computer Methods in Applied Mechanics and Engineering 278(Complete), 621–639 (2014).MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Martin, M. J., Andres, E., Lozano, C., Valero, E.: Volumetric b-splines shape parametrization for aerodynamic shape design. Aerosp. Sci. Techno., 37, 26–36 (2014)CrossRefGoogle Scholar
  34. 34.
    Yan, X., Su, X. G.: Linear Regression Analysis (2009), https://doi.org/10.1142/6986

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ENGYS S.R.L.TriesteItaly
  2. 2.ENGYS Ltd.LondonUK

Personalised recommendations