IJCRS 2017: Rough Sets pp 487-506

# Rough Sets in Incomplete Information Systems with Order Relations Under Lipski’s Approach

• Michinori Nakata
• Hiroshi Sakai
• Keitarou Hara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10313)

## Abstract

Rough sets and rule induction based on them are described in incomplete information tables where attribute values are ordered. We apply possible world semantics to an incomplete information table, as Lipski did in incomplete databases. The set of possible tables on a set of attributes is derived from the original incomplete information table. Rough sets, a pair of lower and upper approximations, are obtained from every possible table. An object is certainly included in an approximation when it is in the approximation in all possible tables, while an object is possibly included in an approximation when it is in the approximation in some possible tables. From this, we obtain certain and possible approximations. The actual approximation is greater than the certain one and less than the possible one. Finally, we obtain the approximation in the form of interval sets. There exists a gap between rough sets and rule induction from them. To bridge rough sets and rule induction, we give expressions that correspond to certain and possible approximations. The expressions consist of a pair of an object and a rule that the object supports. Consequently, four types of rule supports: certain and consistent, certain and inconsistent, possible and consistent, and possible and inconsistent supports, are obtained from the expressions. The formulae can be applied to the case where not only attributes used to approximate but also attributes approximated have a value with incomplete information. The results give a correctness criterion of rough sets and rule induction based on them in incomplete ordered information systems, as the results of Lipski’s work are so in incomplete databases.

## Keywords

Rough sets Rule induction Incomplete information systems Ordered domains Possible world semantics

## Notes

### Acknowledgment

The authors wish to thank the anonymous reviewers for their valuable comments.

## References

1. 1.
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Publishing Company, Boston (1995)
2. 2.
Bosc, P., Duval, L., Pivert, O.: An initial approach to the evaluation of possibilistic queries addressed to possibilistic databases. Fuzzy Sets Syst. 140, 151–166 (2003)
3. 3.
Chen, Z., Shi, P., Liu, P., Pei, Z.: Criteria reduction of set-valued ordered decision system based on approximation quality. Int. J. Innov. Comput. Inf. Control 9(6), 2393–2404 (2013)Google Scholar
4. 4.
Du, W.S., Hu, B.Q.: Dominance-based rough set approach to incomplete ordered information systems. Inf. Sci. 346–347, 106–129 (2016)
5. 5.
Grahne, G.: The Problem of Incomplete Information in Relational Databases. LNCS, vol. 554. Springer, Heidelberg (1991). doi:
6. 6.
Greco, S., Matarazzo, B., Słowinski, R.: Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS, vol. 1711, pp. 146–157. Springer, Heidelberg (1999). doi:
7. 7.
Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129, 1–47 (2001)
8. 8.
Hu, M., Yao, Y.: Definability in incomplete information tables. In: Flores, V., Gomide, F., Janusz, A., Meneses, C., Miao, D., Peters, G., Ślęzak, D., Wang, G., Weber, R., Yao, Y. (eds.) IJCRS 2016. LNCS, vol. 9920, pp. 177–186. Springer, Cham (2016). doi:
9. 9.
Imielinski, T.: Incomplete information in logical databases. Data Eng. 12, 93–104 (1989)Google Scholar
10. 10.
Imielinski, T., Lipski, W.: Incomplete information in relational databases. J. ACM 31, 761–791 (1984)
11. 11.
Kryszkiewicz, M.: Rules in incomplete information systems. Inf. Sci. 113, 271–292 (1999)
12. 12.
Lipski, W.: On semantics issues connected with incomplete information databases. ACM Trans. Database Syst. 4, 262–296 (1979)
13. 13.
Lipski, W.: On databases with incomplete information. J. ACM 28, 41–70 (1981)
14. 14.
Luo, C., Li, T., Chen, H., Liu, D.: Incremental approaches for updating approximations in set-valued ordered information systems. Knowl.-Based Syst. 50, 218–233 (2013)
15. 15.
Luo, G., Yang, X.: Limited dominance-based rough set model and knowledge reductions in incomplete decision system. J. Inf. Sci. Eng. 26, 2199–2211 (2010)
16. 16.
Nakata, M., Sakai, H.: Applying rough sets to information tables containing missing values. In: Proceedings of 39th International Symposium on Multiple-Valued Logic, pp. 286–291. IEEE Computer Society Press (2009)Google Scholar
17. 17.
Nakata, M., Sakai, H.: Twofold rough approximations under incomplete information. Int. J. Gen. Syst. 42, 546–571 (2013)
18. 18.
Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the Relational Database Model. Springer, Heidelberg (1989)
19. 19.
Parsons, S.: Current approaches to handling imperfect information in data and knowledge bases. IEEE Trans. Knowl. Data Eng. 8, 353–372 (1996)
20. 20.
Parsons, S.: Addendum to current approaches to handling imperfect information in data and knowledge bases. IEEE Trans. Knowl. Data Eng. 10, 862 (1998)Google Scholar
21. 21.
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
22. 22.
Qi, Y., Sun, H., Yang, X., Song, Y., Sun, Q.: Approches to approximate distribution reduct in incomplete ordered decision system. J. Inf. Comput. Sci. 3(3), 189–198 (2008)Google Scholar
23. 23.
Qian, Y.H., Liang, J.Y., Song, P., Dang, C.Y.: On dominance relations in disjunctive set-valued ordered information systems. Int. J. Inf. Technol. Decis. Mak. 9(1), 9–33 (2010)
24. 24.
Sakai, H., Okuma, A.: Basic algorithms and tools for rough non-deterministic information analysis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 209–231. Springer, Heidelberg (2004). doi:
25. 25.
Sakai, H., Ishibashi, R., Koba, K., Nakata, M.: Rules and apriori algorithm in non-deterministic information systems. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 328–350. Springer, Heidelberg (2008). doi:
26. 26.
Sakai, H., Liu, C., Zhu, X., Nakata, M.: On NIS-apriori based data mining in SQL. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS, vol. 9920, pp. 514–524. Springer, Cham (2016). doi:
27. 27.
Sakai, H., Wu, M., Nakata, M.: Apriori-based rule generation in incomplete information databases and non-deterministic information systems. Fundam. Inform. 130(3), 343–376 (2014)
28. 28.
Shao, M., Zhang, W.: Dominance relation and rules in an incomplete ordered information system. Int. J. Intell. Syst. 20, 13–27 (2005)
29. 29.
Stefanowski, J., Tsoukiàs, A.: On the extension of rough sets under incomplete information. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS, vol. 1711, pp. 73–81. Springer, Heidelberg (1999). doi:
30. 30.
Wang, H., Guan, Y., Huang, J., Shen, J.: Decision rules acquisition for inconsistent disjunctive set-valued ordered decision information systems. Math. Prob. Eng. 2015, Article ID 936340, 8 p. (2015)Google Scholar
31. 31.
Wei, L., Tang, Z., Wang, R., Yang, X.: Extensions of dominance-based rough set approach in incomplete information system. Autom. Control Comput. Sci. 42(5), 255–263 (2008)
32. 32.
Yang, X., Dou, H.: Valued dominance-based rough set approach to incomplete information system. In: Gavrilova, M.L., Tan, C.J.K. (eds.) Transactions on Computational Science XIII. LNCS, vol. 6750, pp. 92–107. Springer, Heidelberg (2011). doi:
33. 33.
Yang, X., Yang, J., Wu, C., Yu, D.: Dominance-based rough set approach and knowledge reductions in incomplete ordered information system. Inf. Sci. 178, 1219–1234 (2008)
34. 34.
Zimányi, E., Pirotte, A.: Imperfect information in relational databases. In: Motro, A., Smets, P. (eds.) Uncertainty Management in Information Systems: From Needs to Solutions, pp. 35–87. Kluwer Academic Publishers, Dordrecht (1997)

© Springer International Publishing AG 2017

## Authors and Affiliations

• Michinori Nakata
• 1
• Hiroshi Sakai
• 2
• Keitarou Hara
• 3
1. 1.Faculty of Management and Information ScienceJosai International UniversityToganeJapan
2. 2.Faculty of Engineering, Department of Mathematics and Computer Aided SciencesKyushu Institute of TechnologyTobataJapan
3. 3.Department of InformaticsTokyo University of Information SciencesWakaba-kuJapan