Advertisement

Reverse Inference in Symbolic Systems Biology

  • Beatriz Santos-Buitrago
  • Adrián Riesco
  • Merrill Knapp
  • Gustavo  Santos-GarcíaEmail author
  • Carolyn Talcott
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 616)

Abstract

Cell dynamics is intrinsically concurrent, since many different biochemical reactions might take place simultaneously in a cell. Productive symbolic mathematical models of cell biology can be developed by modeling such biochemical reactions with rewrite rules. Analyses and predictions of biological facts can be obtained from such models. The authors have previously published several approaches for searching along cellular signaling networks. In this paper, we introduce a novel reverse inference system by applying narrowing techniques. Moreover, we propose a new general architecture which allows an extendible set of tools for direct and reverse inference by using rewriting logic.

Keywords

Symbolic systems biology Signal transduction Pathway logic Rewriting logic Maude Narrowing 

References

  1. 1.
    Asthagiri, A.R., Lauffenburger, D.A.: A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol. Prog. 17(2), 227–239 (2001)CrossRefGoogle Scholar
  2. 2.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)CrossRefGoogle Scholar
  3. 3.
    Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in membership equational logic. Theor. Comput. Sci. 236, 35–132 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: Maude Manual (Version 2.7), March 2015. http://maude.cs.illinois.edu/w/images/1/1a/Maude-manual.pdf
  5. 5.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: All about maude - a high-performance logical framework: how to specify, program and verify systems in rewriting Logic. Lecture Notes in Computer Science, vol. 4350. Springer (2007). http://dx.doi.org/10.1007/978-3-540-71999-1
  6. 6.
    Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic, many-sorted equational logic, Horn logic with equality, and rewriting logic. Theor. Comput. Sci. 373(1–2), 70–91 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325(1), 69–110 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.: Pathway logic: symbolic analysis of biological signaling. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Proceedings of the 7th Pacific Symposium on Biocomputing, PSB 2002, Lihue, Hawaii, USA, 3–7 January 2002, pp. 400–412, January 2002. http://helix-web.stanford.edu/psb02/eker.pdf
  9. 9.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway logic: executable models of biological networks. In: Gadducci, F., Montanari, U. (eds.) Proceedings of the Fourth International Workshop on Rewriting Logic and its Applications, WRLA 2002, Pisa, Italy, 19–21 September 2002. Electronic Notes in Theoretical Computer Science, vol. 71, pp. 144–161. Elsevier (2004)Google Scholar
  10. 10.
    Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with BioNetGen. Methods Mol. Biol. 500, 113–167 (2009)CrossRefGoogle Scholar
  11. 11.
    Hwang, W., Hwang, Y., Lee, S., Lee, D.: Rule-based multi-scale simulation for drug effect pathway analysis. BMC Med. Inform. Decis. Mak. 13(Suppl 1), S4 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Martí-Oliet, N., Meseguer, J., Verdejo, A.: Towards a strategy language for Maude. In: Martí-Oliet, N. (ed.) Proceedings of the Fifth International Workshop on Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain, 27 March–4 April 2004. Electronic Notes in Theoretical Computer Science, vol. 117, pp. 417–441. Elsevier (2004)Google Scholar
  13. 13.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebr. Program. 81(7–8), 721–781 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Riesco, A., Santos-Buitrago, B., De Las Rivas, J., Knapp, M., Santos-García, G., Talcott, C.: Epidermal growth factor signaling towards proliferation: modeling and logic inference using forward and backward search. BioMed Res. Int. 2017, 11 (2017)CrossRefGoogle Scholar
  16. 16.
    Santos-García, G., De Las Rivas, J., Talcott, C.L.: A logic computational framework to query dynamics on complex biological pathways. In: Saez-Rodriguez, J., Rocha, M.P., Fdez-Riverola, F., De Paz Santana, J.F. (eds.) 8th International Conference on Practical Applications of Computational Biology & Bioinformatics, PACBB 2014, 4–6 June 2014, Salamanca, Spain. Advances in Intelligent Systems and Computing, vol. 294, pp. 207–214. Springer (2014)Google Scholar
  17. 17.
    Santos García, G., Talcott, C.L., De Las Rivas, J.: Analysis of cellular proliferation and survival signaling by using two ligand/receptor systems modeled by pathway logic. In: Abate, A., Safránek, D. (eds.) Hybrid Systems Biology - Fourth International Workshop, HSB 2015, Madrid, Spain, 4–5 September 2015. Revised Selected Papers. Lecture Notes in Computer Science, vol. 9271, pp. 226–245. Springer (2015)Google Scholar
  18. 18.
    SantosGarcía, G., Talcott, C.L., Riesco, A., SantosBuitrago, B., De Las Rivas, J.: Role of nerve growth factor signaling in cancer cell proliferation and survival using a reachability analysis approach. In: Mohamad, M.S., Rocha, M.P., Fdez Riverola, F., Mayo, F.J.D., De Paz, J.F. (eds.) 10th International Conference on Practical Applications of Computational Biology & Bioinformatics, PACBB 2016, 1–3 June 2016. Advances in Intelligent Systems and Computing, vol. 477, pp. 173–181. Springer (2016)Google Scholar
  19. 19.
    Talcott, C.L.: Pathway Logic. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) Formal Methods for Computational Systems Biology, 8th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2008, Bertinoro, Italy, 2–7 June 2008, Advanced Lectures. Lecture Notes in Computer Science, vol. 5016, pp. 21–53. Springer (2008)Google Scholar
  20. 20.
    Talcott, C.L., Dill, D.L.: The pathway logic assistant. In: Plotkin, G. (ed.) Proceedings of the Third International Workshop on Computational Methods in Systems Biology, pp. 228–239 (2005)Google Scholar
  21. 21.
    Talcott, C.L., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway Logic modeling of protein functional domains in signal transduction. In: Altman, R.B., Dunker, A.K., Hunter, L., Jung, T.A., Klein, T.E. (eds.) Proceedings of the 9th Pacific Symposium on Biocomputing, PSB 2004, Fairmont Orchid, Hawaii, USA, 6–10 January 2004, pp. 568–580. World Scientific, January 2004Google Scholar
  22. 22.
    Tenazinha, N., Vinga, S.: A survey on methods for modeling and analyzing integrated biological networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(4), 943–958 (2011)CrossRefGoogle Scholar
  23. 23.
    Weng, G., Bhalla, U.S., Iyengar, R.: Complexity in biological signaling systems. Science 284(5411), 92–96 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Beatriz Santos-Buitrago
    • 1
  • Adrián Riesco
    • 2
  • Merrill Knapp
    • 3
  • Gustavo  Santos-García
    • 4
    Email author
  • Carolyn Talcott
    • 5
  1. 1.Bio and Health Informatics LabSeoul National UniversitySeoulSouth Korea
  2. 2.Universidad Complutense de MadridMadridSpain
  3. 3.Biosciences DivisionSRI InternationalMenlo ParkUSA
  4. 4.University of SalamancaSalamancaSpain
  5. 5.Computer Science LaboratorySRI InternationalMenlo ParkUSA

Personalised recommendations