How Can Photo Sharing Inspire Sharing Genomes?

  • Vinicius V. Cogo
  • Alysson Bessani
  • Francisco M. Couto
  • Margarida  Gama-Carvalho
  • Maria Fernandes
  • Paulo Esteves-Verissimo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 616)

Abstract

People usually are aware of the privacy risks of publishing photos online, but these risks are less evident when sharing human genomes. Modern photos and sequenced genomes are both digital representations of real lives. They contain private information that may compromise people’s privacy, and still, their highest value is most of times achieved only when sharing them with others. In this work, we present an analogy between the privacy aspects of sharing photos and sharing genomes, which clarifies the privacy risks in the latter to the general public. Additionally, we illustrate an alternative informed model to share genomic data according to the privacy-sensitivity level of each portion. This article is a call to arms for a collaborative work between geneticists and security experts to build more effective methods to systematically protect privacy, whilst promoting the accessibility and sharing of genomes.

Keywords

Privacy Data sharing Biology and genetics 

References

  1. 1.
    Allen, A.L.: What must we hide: the ethics of privacy and the ethos of disclosure. Thomas L. Rev. 25, 1 (2012)Google Scholar
  2. 2.
    Ayday, E., Raisaro, J.L., Hengartner, U., et al.: Privacy-preserving processing of raw genomic data. In: Data Privacy Management and Autonomous Spontaneous Security, pp. 133–147. Springer (2014)Google Scholar
  3. 3.
    Bessani, A., et al.: Biobankcloud: a platform for the secure storage, sharing, and processing of large biomedical data sets. In: Proceedings of the DMAH 2015 (2015)Google Scholar
  4. 4.
    Brenner, S.E.: Be prepared for the big genome leak. Nature 498(7453), 139–139 (2013)CrossRefGoogle Scholar
  5. 5.
    Cogo, V.V., Bessani, A., Couto, F.M., et al.: A high-throughput method to detect privacy-sensitive human genomic data. In: Proceedings of the 14th ACM Workshop on Privacy in the Electronic Society, pp. 101–110. ACM (2015)Google Scholar
  6. 6.
    Doersch, C., Singh, S., Gupta, A., et al.: What makes paris look like paris? ACM Trans. Graph. 31(4), 101:1–101:9 (2012)CrossRefGoogle Scholar
  7. 7.
    Gymrek, M., McGuire, A.L., Golan, D., et al.: Identifying personal genomes by surname inference. Science 339(6117), 321–324 (2013)CrossRefGoogle Scholar
  8. 8.
    Homer, N., Szelinger, S., Redman, M., et al.: Resolving individuals contributing trace amounts of dna to highly complex mixtures using high-density snp genotyping microarrays. PLoS Genet. 4(8), e1000167 (2008)CrossRefGoogle Scholar
  9. 9.
    Ilia, P., Polakis, I., Athanasopoulos, E., et al.: Face/off: preventing privacy leakage from photos in social networks. In: Proceedings of the CCS 2015, pp. 781–792. ACM (2015)Google Scholar
  10. 10.
    Jones, S., Norton-Taylor, R.: ‘Congrats to Uncle C’–how his wife’s Facebook page exposed new MI6 head. The Guardian, July 2009Google Scholar
  11. 11.
    Jung, K., Kim, K.I., Jain, A.K.: Text information extraction in images and video: a survey. Pattern Recogn. 37(5), 977–997 (2004)CrossRefGoogle Scholar
  12. 12.
    Kaufman, D.J., Murphy-Bollinger, J., Scott, J., et al.: Public opinion about the importance of privacy in biobank research. Am. J. Hum. Genet. 85(5), 643–654 (2009)CrossRefGoogle Scholar
  13. 13.
    Ko, R.K.: Data accountability in cloud systems. In: Security, Privacy and Trust in Cloud Systems, pp. 211–238. Springer (2014)Google Scholar
  14. 14.
    Kokolakis, S.: Privacy attitudes and privacy behaviour: a review of current research on the privacy paradox phenomenon. Comput. Secur. 64, 122–134 (2015)CrossRefGoogle Scholar
  15. 15.
    Naveed, M., Ayday, E., Clayton, E.W., et al.: Privacy in the genomic era. ACM Comput. Surv. (CSUR) 48(1), 6 (2015)CrossRefGoogle Scholar
  16. 16.
    Nyholt, D.R., Yu, C.E., Visscher, P.M.: On Jim Watson’s APoE status: genetic information is hard to hide. Eur. J. Hum. Genet. 17, 147–149 (2009)CrossRefGoogle Scholar
  17. 17.
    Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. 28(6), 976–990 (2010)CrossRefGoogle Scholar
  18. 18.
    Ra, M.R., Govindan, R., Ortega, A.: P3: toward privacy-preserving photo sharing. In: Proceedings of the USENIX Symposium on NSDI 2013, pp. 515–528 (2013)Google Scholar
  19. 19.
    Vayena, E., Gasser, U.: Between openness and privacy in genomics. PLoS Med. 13(1), e1001937 (2016)CrossRefGoogle Scholar
  20. 20.
    Walsh, S., Liu, F., Ballantyne, K.N., et al.: Irisplex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci. Int. Genet. 5(3), 170–180 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vinicius V. Cogo
    • 1
  • Alysson Bessani
    • 1
  • Francisco M. Couto
    • 1
  • Margarida  Gama-Carvalho
    • 2
  • Maria Fernandes
    • 3
  • Paulo Esteves-Verissimo
    • 3
  1. 1.LaSIGE, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.Faculty of Sciences, BioISI – Biosystems & Integrative Sciences InstituteUniversity of LisbonLisbonPortugal
  3. 3.SnT - Interdisciplinary Centre for Security, Reliability and TrustUniversity of LuxembourgLuxembourg CityLuxembourg

Personalised recommendations