Advertisement

Direct Optimal Control and Model Predictive Control

  • Mario Zanon
  • Andrea Boccia
  • Vryan Gil S. Palma
  • Sonja Parenti
  • Ilaria Xausa
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2180)

Abstract

Model predictive control is a feedback control technique based on repeatedly solving optimal control problems. Direct methods for optimal control have gained popularity especially for practical applications, due to their flexibility. In this chapter we first present the state of the art in MPC stability theory. Then, we introduce the numerical methods used for direct optimal control and some variants specifically tailored to MPC. We conclude the chapter with five application examples.

References

  1. 1.
    KUKA youBot store. www.youbot-store.com
  2. 2.
    POV-Ray. www.povray.org
  3. 3.
    Amrit, R., Rawlings, J., Angeli, D.: Economic optimization using model predictive control with a terminal cost. Ann. Rev. Control 35, 178–186 (2011)CrossRefGoogle Scholar
  4. 4.
    Angeli, D., Amrit, R., Rawlings, J.: Receding horizon cost optimization for overly constrained nonlinear plants. In: Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference (2009)Google Scholar
  5. 5.
    Angeli, D., Amrit, R., Rawlings, J.: Enforcing convergence in nonlinear economic MPC. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) (2011)Google Scholar
  6. 6.
    Angeli, D., Amrit, R., Rawlings, J.: On Average Performance and Stability of Economic Model Predictive Control. IEEE Trans. Autom. Control 57, 1615–1626 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Angeli, D., Rawlings, J.: Receding horizon cost optimization and control for nonlinear plants. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems (2010)Google Scholar
  8. 8.
    Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadelphia (1995)zbMATHCrossRefGoogle Scholar
  9. 9.
    Baier, R., Gerdts, M.: A computational method for non-convex reachable sets using optimal control. In: Proceedings of the European Control Conference, pp. 23–26 (2009)Google Scholar
  10. 10.
    Baier, R., Gerdts, M., Xausa, I.: Approximation of reachable sets using optimal control algorithms. Numer. Algebra Control Optim. 3(3), 519–548 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations. Springer, Berlin (2008)zbMATHGoogle Scholar
  12. 12.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)zbMATHGoogle Scholar
  13. 13.
    Berkovitz, L.D.: Convexity and Optimization in \(\mathbb{R}^{n}\). Wiley, New York (2001)Google Scholar
  14. 14.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. II, 2nd edn. Athena Scientific, Belmont (2001)Google Scholar
  15. 15.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I, 3rd edn. Athena Scientific, Belmont (2005)Google Scholar
  16. 16.
    Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, Philadelphia (2010)zbMATHCrossRefGoogle Scholar
  17. 17.
    Bischoff, R., Huggenberger, U., Prassler, E.: KUKA youBot- a mobile manipulator for research and education. In: The 2011 IEEE International Conference on Robotics and Automation (2011)Google Scholar
  18. 18.
    Boccia, A.: Optimization based control of nonlinear constrained systems. Ph.D. Thesis, Imperial College London (2014)Google Scholar
  19. 19.
    Boccia, A., Grüne, L., Worthmann, K.: Stability and feasibility of state-constrained linear MPC without stabilizing terminal constraints. In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, pp. 453–460 (2014)Google Scholar
  20. 20.
    Boccia, A., Grüne, L., Worthmann, K.: Stability and feasibility of state constrained MPC without stabilizing terminal constraints. Syst. Control Lett. 72, 14–21 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Bock, H.: Recent advances in parameter identification techniques for ODE. In: Deuflhard, P., Hairer, E. (eds.) Numerical Treatment of Inverse Problems in Differential and Integral Equations. Birkhäuser, Boston (1983)Google Scholar
  22. 22.
    Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings 9th IFAC World Congress Budapest, pp. 242–247. Pergamon Press (1984)Google Scholar
  23. 23.
    Bokanowski, O., Désilles, A., Zidani, H.: Roc-hj solver numerical parallel library for solving Hamilton–Jacobi equations. Technical Report(2011). http://uma.ensta-paristech.fr/files/ROC-HJ/
  24. 24.
    Bokanowski, O., Forcadel, N., Zidani, H.: Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J. Control Optim. 48, 4292–4316 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Bokanowski, O., Zidani, H.: Minimal time problems with moving targets and obstacles. In: Proceedings of 18th IFAC World Congress, pp. 2589–2593 (2011)Google Scholar
  26. 26.
    Bossanyi, E.A.: Further load reductions with individual pitch control. Wind Energy 8, 481–485 (2005)CrossRefGoogle Scholar
  27. 27.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  28. 28.
    Broyden, C.: The convergence of a class of double-rank minimization algorithms. IMA J. Appl. Math. 6(1), 76–90 (1970)zbMATHCrossRefGoogle Scholar
  29. 29.
    Büskens, C.: Users’s guide for the fortran subroutines bdsco, nudocccs, kollokat, diroptim and dirmesch. Technical Report, Universität Münster, Germany (1994)Google Scholar
  30. 30.
    Büskens, C.: Optimierungsmethoden und sensitivitätsanalyse für optimale steuerprozesse mit steuer-und zustands-beschränkungen. Ph.D. Thesis, Universität Münster, Germany (1998)Google Scholar
  31. 31.
    Büskens, C., Maurer, H.: Sensitivity analysis and real-time optimization of parametric nonlinear programming problems. In: Grötschel, M., Krumke, S.O., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 3–16. Springer, Berlin/Heidelberg (2001)CrossRefGoogle Scholar
  32. 32.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2008)zbMATHCrossRefGoogle Scholar
  33. 33.
    Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-Newton matrices and their use in limited memory methods. Math. Program. 63, 129–156 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Désilles, A., Zidani, H., Crück, E.: Collision analysis for an UAV. In: Proceedings of AIAA Guidance, Navigation, and Control Conference (2012)CrossRefGoogle Scholar
  35. 35.
    Deuflhard, P., Pesch, H.J., Rentrop, P.: A modified continuation method for the numerical solution of nonlinear two-point boundary value problems by shooting techniques. Numer. Math. 26, 327–343 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Diehl, M., Amrit, R., Rawlings, J.: A Lyapunov function for economic optimizing model predictive control. IEEE Trans. Autom. Control 56(3), 703–707 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Diehl, M., Bock, H., Schlöder, J., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control 12(4), 577–585 (2002)CrossRefGoogle Scholar
  38. 38.
    Diehl, M., Ferreau, H.J., Haverbeke, N.: Efficient numerical methods for nonlinear MPC and moving horizon estimation. In: Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol. 384, pp. 391–417. Springer, Berlin (2009)Google Scholar
  39. 39.
    Diehl, M., Findeisen, R., Allgöwer, F., Bock, H., Schlöder, J.: Nominal stability of the real-time iteration scheme for nonlinear model predictive control. IEE Proc. Control Theory Appl. 152(3), 296–308 (2005)CrossRefGoogle Scholar
  40. 40.
    Diehl, M., Magni, L., Nicolao, G.D.: Efficient NMPC of unstable periodic systems using approximate infinite horizon closed loop costing. Ann. Rev. Control 28(1), 37–45 (2004)CrossRefGoogle Scholar
  41. 41.
    Ellis, M., Christofides, P.D.: Economic model predictive control with time-varying objective function for nonlinear process systems. AIChE J. 60, 507–519 (2014)CrossRefGoogle Scholar
  42. 42.
    Fabien, B.C.: DSOA: The implementation of a dynamic system optimization algorithm. Optim. Control Appl. Methods 31, 231–247 (2010)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Ferreau, H.: Model predictive control algorithms for applications with millisecond timescales. Ph.D. Thesis, K.U. Leuven (2011)Google Scholar
  44. 44.
    Ferreau, H., Kirches, C., Potschka, A., Bock, H., Diehl, M.: qpOASES: A parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)Google Scholar
  45. 45.
    Fiacco, A.: Introduction to sensitivity and stability analysis in nonlinear programming. In: Mathematics in Science and Engineering. Academic, New York (1983)zbMATHGoogle Scholar
  46. 46.
    Fiacco, A.V.: Sensitivity analysis for nonlinear programming using penalty methods. Math. Program. 10(1), 287–311 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13(3), 317–322 (1970)zbMATHCrossRefGoogle Scholar
  48. 48.
    Frasch, J.V., Gray, A.J., Zanon, M., Ferreau, H.J., Sager, S., Borrelli, F., Diehl, M.: An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance of ground vehicles. In: Proceedings of the European Control Conference (2013)Google Scholar
  49. 49.
    Geebelen, K., Ahmad, H., Vukov, M., Gros, S., Swevers, J., Diehl, M.: An experimental test set-up for launch/recovery of an airborne wind energy (AWE) system. In: Proceedings of the 2012 American Control Conference (2012)Google Scholar
  50. 50.
    Geebelen, K., Vukov, M., Wagner, A., Ahmad, H., Zanon, M., Gros, S., Vandepitte, D., Swevers, J., Diehl, M.: An experimental test setup for advanced estimation and control of an airborne wind energy systems. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy. Springer (2013)Google Scholar
  51. 51.
    Geebelen, K., Wagner, A., Gros, S., Swevers, J., Diehl, M.: Moving horizon estimation with a huber penalty function for robust pose estimation of tethered airplanes. In: Proceedings of the 2012 American Control Conference (2013)Google Scholar
  52. 52.
    Gerdts, M.: Direct shooting method for the numerical solution of higher-index DAE optimal control problems. J. Optim. Theory Appl. 117, 267–294 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Gerdts, M.: A variable time transformation method for mixed-integer optimal control problems. Optim. Control Appl. Methods 27, 169–182 (2006)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Gerdts, M.: Ocpid-dae1 optimal control and parameter identification with differential-algebraic equations of index 1 (2011). http://www.optimal-control.de Google Scholar
  55. 55.
    Gerdts, M.: Optimal Control of ODEs and DAEs. De Gruyter Textbook. De Gruyter, Berlin (2012)zbMATHCrossRefGoogle Scholar
  56. 56.
    Gerdts, M., Xausa, I.: Avoidance trajectories using reachable sets and parametric sensitivity analysis. In: System Modeling and Optimization, pp. 491–500. Springer, Berlin (2013)Google Scholar
  57. 57.
    Gertz, M., Wright, J.W.: Object-Oriented Software for Quadratic Programming. ACM Trans. Math. Softw. 29(1), 58–81 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Geyer, T., Papafotiou, G., Frasca, R., Morari, M.: Constrained optimal control of the step-down DC-DC converter. IEEE Trans. Power Electron. 23(5), 2454–2464 (2008)CrossRefGoogle Scholar
  59. 59.
    Girsanov, I.V.: Lectures on Mathematical Theory of Extremum Problems. Springer, Berlin (1972)zbMATHCrossRefGoogle Scholar
  60. 60.
    Goldfarb, D.: A family of variable-metric methods derived by variational means. Math. Comput. 24(109), 23–26 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Gray, A., Zanon, M., Frasch, J.: Parameters for a Jaguar X-Type. Technical Report (2012). http://www.mathopt.de/RESEARCH/obstacleAvoidance.php
  62. 62.
    Gros, S., Ahmad, H., Geebelen, K., Diehl, M.: In-flight estimation of the aerodynamic roll damping and trim angle for a tethered aircraft based on multiple-shooting. In: System Identification Conference (2012)Google Scholar
  63. 63.
    Gros, S., Diehl, M.: Modeling of airborne wind energy systems in natural coordinates. Airborne Wind Energy. Springer, Berlin (2013)CrossRefGoogle Scholar
  64. 64.
    Gros, S., Zanon, M., Diehl, M.: Orbit Control for a Power Generating Airfoil Based on Nonlinear MPC. In: American Control Conference (2012) (submitted)CrossRefGoogle Scholar
  65. 65.
    Gros, S., Zanon, M., Diehl, M.: A relaxation strategy for the optimization of airborne wind energy systems. In: European Control Conference (2013)Google Scholar
  66. 66.
    Gros, S., Zanon, M., Diehl, M.: Control of airborne wind energy systems based on nonlinear model predictive control & moving horizon estimation. In: European Control Conference (2013)Google Scholar
  67. 67.
    Gros, S., Zanon, M., Quirynen, R., Bemporad, A., Diehl, M.: From linear to nonlinear MPC: bridging the gap via real-time iteration. Int. J. Control 1–19 (2016)Google Scholar
  68. 68.
    Gros, S., Zanon, M., Vukov, M., Diehl, M.: Nonlinear MPC and MHE for mechanical multi-body systems with application to fast tethered airplanes. In: Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference, Noordwijkerhout, The Netherlands (2012)Google Scholar
  69. 69.
    Grüne, L.: Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems. SIAM J. Control Optim. 48(2), 1206–1228 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Grüne, L.: Economic receding horizon control without terminal constraints. Automatica 49, 725–734 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Grüne, L.: Approximation properties of receding horizon optimal control. Jahresber. Dtsch. Math. Ver 118(1), 3–37 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Grüne, L., Palma, V.G.: On the benefit of re-optimization in optimal control under perturbations. In: 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014), pp. 439–446 (2014)Google Scholar
  73. 73.
    Grüne, L., Palma, V.G.: Robustness of performance and stability for multistep and updated multistep MPC schemes, Discret. Continuous Dyn. Syst. A 35(9), 4385–4414 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Grüne, L., Pannek, J.: Nonlinear model predictive control: theory and algorithms. In: Communications and Control Engineering. Springer, London (2011)zbMATHCrossRefGoogle Scholar
  75. 75.
    Grüne, L., Rantzer, A.: On the infinite horizon performance of receding horizon controllers. IEEE Trans. Autom. Control 53(9), 2100–2111 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Science & Business, New York (2008)zbMATHGoogle Scholar
  77. 77.
    Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear programming and collocation. AIAA J. Guid. Control, Dyn. 10, 338–342 (1987)Google Scholar
  78. 78.
    Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37, 181–218 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Heidarinejad, M., Liu, J., Christofides, P.D.: Economic model predictive control using Lyapunov techniques: handling asynchronous, delayed measurements and distributed implementation. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) (2011)Google Scholar
  80. 80.
    Heidarinejad, M., Liu, J., Christofides, P.D.: Economic model predictive control of switched nonlinear systems. Syst. Control Lett. 62, 77–84 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Horn, G., Gros, S., Diehl, M.: Airborne Wind Energy. Springer, Berlin (2013)Google Scholar
  82. 82.
    Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567. Kos, Greece (2007). (CD-ROM)Google Scholar
  83. 83.
    Houska, B., Ferreau, H., Diehl, M.: An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range. Automatica 47(10), 2279–2285 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Huang, R., Biegler, L.T., Harinath, E.: Robust stability of economically oriented infinite horizon NMPC that include cyclic processes. J. Process Control 22, 51–29 (2012)CrossRefGoogle Scholar
  85. 85.
    Ioffe, A.D., Tikhomirov, V.M., Makowski, K.: Theory of Extremal Problems. Elsevier, North-Holland, New York (2009)Google Scholar
  86. 86.
    Jadbabaie, A., Hauser, J.: On the stability of receding horizon control with a general terminal cost. IEEE Trans. Autom. Control 50(5), 674–678 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Karush, W.: Minima of Functions of Several Variables with Inequalities as Side Constraints. Master’s Thesis, Department of Mathematics, University of Chicago (1939)Google Scholar
  88. 88.
    Kehrle, F., Frasch, J.V., Kirches, C., Sager, S.: Optimal control of formula 1 race cars in a VDrift based virtual environment. In: Bittanti, S., Cenedese, A., Zampieri, S. (eds.) Proceedings of the 18th IFAC World Congress, pp. 11,907–11,912 (2011)Google Scholar
  89. 89.
    Kerrigan, E.: Robust constraint satisfaction: invariant sets and predictive control. Ph.D. Thesis, University of Cambridge (2000)Google Scholar
  90. 90.
    Khalil, H.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)zbMATHGoogle Scholar
  91. 91.
    Kiencke, U., Nielsen, L.: Automotive Control Systems. Springer, Berlin (2005)CrossRefGoogle Scholar
  92. 92.
    Knauer, M., Büskens, C.: From WORHP to TransWORHP. In: 5th International Conference on Astrodynamics Tools and Techniques, Noordwijk, Netherlands. Proceedings of the 5th International Conference on Astrodynamics Tools and Techniques (2012)Google Scholar
  93. 93.
    Kühl, P., Diehl, M., Kraus, T., Schlöder, J.P., Bock, H.G.: A real-time algorithm for moving horizon state and parameter estimation. Comput. Chem. Eng. 35(1), 71–83 (2011)CrossRefGoogle Scholar
  94. 94.
    Laks, J., Pao, L., Wright, A.: Control of wind turbines: past, present, and future. In: American Control Conference, pp. 2096–2103 (2009)Google Scholar
  95. 95.
    Landry, C., Gerdts, M., Henrion, R., Hömberg, D.: Path planning and Collision avoidance for robots. Numer. Algebra Control Optim. 2, 437–463 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    Li, W., Biegler, L.: Multistep, Newton-type control strategies for constrained nonlinear processes. Chem. Eng. Res. Des. 67, 562–577 (1989)Google Scholar
  97. 97.
    Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Loyd, M.: Crosswind kite power. J. Energy 4(3), 106–111 (1980)CrossRefGoogle Scholar
  99. 99.
    Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  100. 100.
    Maurer, H., Pesch, H.: Solution differentiability for parametric nonlinear control problems with control-state constraints. J. Optim. Theory Appl. 86(2), 285–309 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    Mayne, D., Rawlings, J.: Model Predictive Control. Nob Hill, Madison (2013)Google Scholar
  102. 102.
    Middlebrook, R., Cuk, S.: A general unified approach to modeling switching-converter power stages. Int. J. Electron. 42(6), 521–550 (1977)CrossRefGoogle Scholar
  103. 103.
    Mitchell, I.M.: A toolbox of level set methods. Technical Report, University British Columbia, Vancouver, BC, Canada (2004)Google Scholar
  104. 104.
    Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50, 947–957 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Müller, M., Angeli, D., Allgöwer, F.: On convergence of averagely constrained economic MPC and necessity of dissipativity for optimal steady-state operation. In: Proceedings of the American Control Conference (2013)CrossRefGoogle Scholar
  106. 106.
    Müller, M., Angeli, D., Allgöwer, F.: On necessity and robustness of dissipativity in economic model predictive control. IEEE Trans. Autom. Control 60(6), 1671–1676 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Müller, M.A., Grüne, L.: Economic model predictive control without terminal constraints for optimal periodic behavior. Automatica 70(C), 128–139 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2 edn. Springer, Berlin (2006)Google Scholar
  109. 109.
    Oberle, H.J., Grimm, W.: BNDSCO: a program for the numerical solution of optimal control problems. Institut für Angewandte Mathematik (2001)Google Scholar
  110. 110.
    Ohtsuka, T.: A Continuation/GMRES method for fast computation of nonlinear receding horizon control. Automatica 40(4), 563–574 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  111. 111.
    Otte, D., Jänsch, M., Haasper, C.: Injury protection and accident causation parameters for vulnerable road users based on German In-Depth Accident Study (GIDAS). Accid. Anal. Prev. 44, 149–153 (2012)CrossRefGoogle Scholar
  112. 112.
    Pacejka, H.B.: Tyre and Vehicle Dynamics. Elsevier, Delft (2006)zbMATHGoogle Scholar
  113. 113.
    Paelinck, R., Geebelen, K., Gros, S., Swevers, J., Vandepitte, D., Diehl, M.: Snelle vliegers maken groene stroom. Het Ingenieursblad 5, 16–20 (2011)Google Scholar
  114. 114.
    Palma, V.G.: Robust updated MPC schemes. Ph.D. Thesis, University of Bayreuth (2015)Google Scholar
  115. 115.
    Palma, V.G., Grüne, L.: Stability, performance and robustness of sensitivity-based multistep feedback NMPC. In: 20th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2012) (2012). Extended Abstract, CD-ROM, Paper No. 68, 4 pp.Google Scholar
  116. 116.
    Palma, V.G., Suardi, A., Kerrigan, E.: Sensitivity-based multistep MPC for embedded systems. In: 5th IFAC Conference on Nonlinear Model Predictive Control (NMPC 15), 6 pp. (2015)Google Scholar
  117. 117.
    Pamadi: Performance, Stability, Dynamics, and Control of Airplanes. American Institute of Aeronautics and Astronautics, Inc., Reston (2003)Google Scholar
  118. 118.
    Payne, P., McCutchen, C.: Self-Erecting Windmill. United States Patent 3987987 (1976). http://www.google.com/patents/about?id=njstAAAAEBAJ\&dq=4076190
  119. 119.
    Pesch, H.J.: Numerical computation of neighboring optimum feedback control schemes in real-time. Appl. Math. Optim. 5(1), 231–252 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    Pesch, H.J., Bulirsch, R.: The maximum principle, Bellman’s equation, and Carathéodory’s work. J. Optim. Theory Appl. 80, 199–225 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    Primbs, J., Nevistić, V.: Feasibility and stability of constrained finite receding horizon control. Automatica 36, 965–971 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    Pytlak, R.: Runge-Kutta based procedure for the optimal control of differential-algebraic equations. J. Optim. Theory Appl. 97, 675–705 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    Quirynen, R., Houska, B., Vallerio, M., Telen, D., Logist, F., Van Impe, J., Diehl, M.: Symmetric algorithmic differentiation based exact hessian SQP method and software for economic MPC. In: Conference on Decision and Control, 2014CrossRefGoogle Scholar
  124. 124.
    Quirynen, R., Vukov, M., Diehl, M.: Auto generation of implicit integrators for embedded NMPC with microsecond sampling times. In: Lazar, M., Allgöwer, F. (eds.) Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference (2012)Google Scholar
  125. 125.
    Rauški, S.: Limited Memory BFGS method for Sparse and Large- Scale Nonlinear Optimization. Ph.D. Thesis, University Bremen (2014)Google Scholar
  126. 126.
    Rawlings, J., Bonne, D., Jorgensen, J., Venkat, A., Jorgensen, S.: Unreachable setpoints in model predictive control. IEEE Trans. Autom. Control 53, 2209–2215 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    Rawlings, J., Ji, L.: Optimization-based state estimation: current status and some new results. J. Process Control 22(8), 1439–1444 (2012)CrossRefGoogle Scholar
  128. 128.
    Rawlings, J., Mayne, D.: Model Predictive Control: Theory and Design. Nob Hill, Madison (2009)Google Scholar
  129. 129.
    Rawlings, J.B., Amrit, R.: Optimizing process economic performance using model predictive control. In: Proceedings of NMPC 08 Pavia (2009)Google Scholar
  130. 130.
    Robinson, S.: Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinearprogramming algorithms. Math. Program. 7, 1–16 (1974)zbMATHCrossRefGoogle Scholar
  131. 131.
    Ross, I.M., Fahroo, F.: A unified computational framework for real-time optimal control. In: Proceedings of 42nd IEEE Conference on Decision and Control, pp. 2210–2215 (2003)Google Scholar
  132. 132.
    Shamma, J.S., Xiong, D.: Linear nonquadratic optimal control. IEEE Trans. Autom. Control 42(6), 875–879 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24, 647–656 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    Sternberg, J., Goit, J., Gros, S., Meyers, J., Diehl, M.: Robust and stable periodic flight of power generating kite systems in a turbulent wind flow field. In: In Proceedings of the 15th IFAC Workshop on Control Applications of Optimization (2012)Google Scholar
  135. 135.
    Sternberg, J., Gros, S., Houska, B., Diehl, M.: Approximate robust optimal control of periodic systems with invariants and high-index differential algebraic systems. In: In Proceedings of the 7th IFAC Symposium on Robust Control Design, pp. 678–683 (2012)Google Scholar
  136. 136.
    Suardi, A., Longo, S., Kerrigan, E.C., Constantinides, G.A.: Energy-aware MPC co-design for DC-DC converters. In: 2013 European Control Conference (ECC), pp. 3608–3613. IEEE (2013)Google Scholar
  137. 137.
    Subchan, S., Zbikowski, R.: Computational Optimal Control: Tools and Practice. Wiley, New York (2009)CrossRefGoogle Scholar
  138. 138.
    Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  139. 139.
    Teo, K., Jennings, L., Lee, H., Rehbock, V.: The control parameterization enhancing transform for constrained optimal control problems. J. Aust. Math. Soc. Ser. B. Appl. Math. 40, 314–335 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    Verschueren, R., Zanon, M., Quirynen, R., Diehl, M.: A sparsity preserving convexification procedure for indefinite quadratic programs arising in direct optimal control (2016). Available on Optimization Online: http://www.optimization-online.org/DB_HTML/2016/06/5512.html
  141. 141.
    Vinter, R.: Optimal control. In: Systems & Control: Foundations & Applications. Birkhäuser, Boston (2000)Google Scholar
  142. 142.
    Wassel, D.: Exploring novel designs of NLP solvers: architecture and Implementation of WORHP. Ph.D. Thesis, University Bremen (2013)Google Scholar
  143. 143.
    Wilson, R.: A simplicial algorithm for concave programming. Ph.D. Thesis, Department of Computer Science. Stanford University (1963)Google Scholar
  144. 144.
    Worthmann, K.: Stability Analysis of unconstrained Receding Horizon Control. Ph.D. Thesis, University of Bayreuth (2011)Google Scholar
  145. 145.
    Wright, S., Nocedal, J.: Numerical Optimization. Springer, Berlin (1999)zbMATHGoogle Scholar
  146. 146.
    Xausa, I., Baier, R., Gerdts, M., Gonter, M., Wegwerth, C.: Avoidance trajectories for driver assistance systems via solvers for optimal control problems. In: Proceedings of 20th International Symposium on Mathematical Theory of Networks and Systems (2012)Google Scholar
  147. 147.
    Yang, X., Biegler, L.T.: Advanced-multi-step nonlinear model predictive control. J. Process Control 23(8), 1116–1128 (2013)CrossRefGoogle Scholar
  148. 148.
    Zanon, M., Frasch, J., Diehl, M.: Nonlinear moving horizon estimation for combined state and friction coefficient estimation in autonomous driving. In: Proceedings of the European Control Conference (2013)Google Scholar
  149. 149.
    Zanon, M., Frasch, J.V., Vukov, M., Sager, S., Diehl, M.: Model predictive control of autonomous vehicles. In: Proceedings of the Workshop on Optimization and Optimal Control of Automotive Systems (2014)CrossRefGoogle Scholar
  150. 150.
    Zanon, M., Gros, S., Andersson, J., Diehl, M.: Airborne Wind Energy Based on Dual Airfoils. IEEE Trans. Control Syst. Technol. 21, 1215–1222 (2013)CrossRefGoogle Scholar
  151. 151.
    Zanon, M., Gros, S., Diehl, M.: A Lyapunov function for periodic economic optimizing model predictive control. In: Proceedings of the 52nd Conference on Decision and Control (CDC) (2013)Google Scholar
  152. 152.
    Zanon, M., Gros, S., Diehl, M.: Model predictive control of rigid-airfoil airborne wind energy systems. In: Ahrens, U., Diehl, M., Schmehl, R. (eds.) Airborne Wind Energy. Springer, Berlin (2013)Google Scholar
  153. 153.
    Zanon, M., Gros, S., Diehl, M.: Rotational start-up of tethered airplanes based on nonlinear MPC and MHE. In: Proceedings of the European Control Conference (2013)Google Scholar
  154. 154.
    Zanon, M., Gros, S., Diehl, M.: Indefinite linear MPC and approximated economic MPC for nonlinear systems. J. Process Control 24(8), 1273–1281 (2014)CrossRefGoogle Scholar
  155. 155.
    Zanon, M., Gros, S., Diehl, M.: A tracking MPC formulation that is locally equivalent to economic MPC. J. Process Control 45, 30–42 (2016)CrossRefGoogle Scholar
  156. 156.
    Zanon, M., Gros, S., Meyers, J., Diehl, M.: Airborne wind energy: airfoil-airmass interaction. In: Proceedings of the 19th World Congress of the International Federation of Automatic Control (2014)Google Scholar
  157. 157.
    Zanon, M., Horn, G., Gros, S., Diehl, M.: Control of dual-airfoil airborne wind energy systems based on nonlinear MPC and MHE. In: European Control Conference (2014)CrossRefGoogle Scholar
  158. 158.
    Zavala, V.M., Biegler, L.: The advanced step NMPC controller: optimality, stability and robustness. Automatica 45, 86–93 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mario Zanon
    • 1
  • Andrea Boccia
    • 2
  • Vryan Gil S. Palma
    • 3
  • Sonja Parenti
    • 4
  • Ilaria Xausa
    • 5
  1. 1.Chalmers University of TechnologyGöteborgSweden
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Universität BayreuthBayreuthGermany
  4. 4.ESG Elektroniksystem- und Logistik-GmbHFürstenfeldbruckGermany
  5. 5.VolkswagenWolfsburgGermany

Personalised recommendations