Agent-Based Structures of Robot Systems

  • Cezary Zieliński
  • Tomasz Winiarski
  • Tomasz Kornuta
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 577)

Abstract

Robot control systems structures based on agents are presented. Agents are classified into 8 categories, with the embodied agent being the most general one. Out of those agents diverse control systems are built. Single/multi-robot systems are considered, where robots can have single or multiple effectors. The presentation of the subject relies on already implemented systems.

Keywords

agent embodied agent multi-agent multi-robot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Matarić, M.J., Michaud, F.: Behavior-Based Systems. In: The Handbook of Robotics. Springer (June 2008) 891–909Google Scholar
  2. 2. Bulter, Z., Rizzi, A.: Distributed and cellular robots. In Khatib, O., Siciliano, B., eds.: Springer Handbook of Robotics. Springer (June 2008) 911–920Google Scholar
  3. 3. Parker, L.E.: Multiple mobile robot systems. In Khatib, O., Siciliano, B., eds.: Springer Handbook of Robotics. Springer (June 2008) 921–941Google Scholar
  4. 4. Yim, M., Shen, W.M., Salemi, B., daniela Rus, Moll, M., hod Lipson, Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics & Automation Magazine 14(1) (March 2007) 43–52Google Scholar
  5. 5. Matarić, M.J.: Issues and approaches in the design of collective autonomous agents. Robotics and Autonomous Systems 16(2) (1995) 321 – 331Google Scholar
  6. 6. Farinelli, A., Iocchi, L., Nardi, D.: Multirobot systems: a classification focused on coordination. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 34(5) (Oct 2004) 2015–2028Google Scholar
  7. 7. Dudek, G., Jenkin, M.R.M., Milios, E., Wilkes, D.: A taxonomy for multi-agent robotics. Autonomous Robots 3(4) (1996) 375–397Google Scholar
  8. 8. Doriya, R., Mishra, S., Gupta, S.: A brief survey and analysis of multi-robot communication and coordination. In: Computing, Communication Automation (ICCCA), 2015 International Conference on. (May 2015) 1014–1021Google Scholar
  9. 9. Chibani, A., Amirat, Y., Mohammed, S., Matson, E., Hagita, N., Barreto, M.: Ubiquitous robotics: Recent challenges and future trends. Robotics and Autonomous Systems 61(11) (2013) 1162 – 1172Google Scholar
  10. 10. Kortenkamp, D., Simmons, R.: Robotic systems architectures and programming. In Khatib, O., Siciliano, B., eds.: Springer Handbook of Robotics. Springer (2008) 187–206Google Scholar
  11. 11. Coste-Maniere, E., Simmons, R.: Architecture, the backbone of robotic systems. In: Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE International Conference on. Volume 1. (2000) 67–72 vol.1Google Scholar
  12. 12. Zieliński, C., Winiarski, T.: General specification of multi-robot control system structures. Bulletin of the Polish Academy of Sciences – Technical Sciences 58(1) (2010) 15–28Google Scholar
  13. 13. Kornuta, T., Zieliński, C.: Robot control system design exemplified by multicamera visual servoing. Journal of Intelligent & Robotic Systems 77(3–4) (2015) 499–524Google Scholar
  14. 14. Zieliński, C., Kornuta, T., Winiarski, T.: A systematic method of designing control systems for service and field robots. In: 19-th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR, IEEE (2014) 1–14Google Scholar
  15. 15. Zieliński, C., Kornuta, T.: Diagnostic requirements in multi-robot systems. In: Intelligent Systems in Technical and Medical Diagnostics. Volume 230. Springer (2014) 345–356Google Scholar
  16. 16. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River, N.J. (1995)Google Scholar
  17. 17. Zieliński, C., Trojanek, P.: Stigmergic cooperation of autonomous robots. Journal of Mechanism and Machine Theory 44 (April 2009) 656–670Google Scholar
  18. 18. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York, Oxford (1999)Google Scholar
  19. 19. Psomopoulos, F., Tsardoulias, E., Giokas, A., Zieliński, C., Prunet, V., Trochidis, I., Daney, D., Serrano, M., Courtes, L., Arampatzis, S., Mitkas, P.: Rapp system architecture. In: IROS 2014 – Assistance and Service Robotics in a Human Environment, Workshop in conjunction with IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, Illinois, September 14 (2014) 14–18Google Scholar
  20. 20. Winiarski, T., Banachowicz, K., Seredyński, D.: Two mode impedance control of Velma service robot redundant arm. In Szewczyk, R., Zieliński, C., Kaliczyńska, M., eds.: Progress in Automation, Robotics and Measuring Techniques. Vol. 2 Robotics. Volume 351 of Advances in Intelligent Systems and Computing (AISC)., Springer (2015) 319–328Google Scholar
  21. 21. Winiarski, T., Banachowicz, K., Seredyński, D.: Multi-sensory feedback control in door approaching and opening. In Filev, D., Jabłkowski, J., Kacprzyk, J., Krawczak, M., Popchev, I., Rutkowski, L., Sgurev, V., Sotirova, E., Szynkarczyk, P., Zadrozny, S., eds.: Intelligent Systems’2014. Volume 323 of Advances in Intelligent Systems and Computing. Springer International Publishing (2015) 57–70Google Scholar
  22. 22. Janiak, M., Zieliński, C.: Control system architecture for the investigation of motion control algorithms on an example of the mobile platform rex. Bulletin of the Polish Academy of Sciences – Technical Sciences 63(3) (2015) 667–678Google Scholar
  23. 23. Tchoń, K., Jakubiak, J.: Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms. International Journal of Control 76(14) (2003) 1387–1419Google Scholar
  24. 24. Zieliński, C., Kornuta, T., Trojanek, P., Winiarski, T.: Method of Designing Autonomous Mobile Robot Control Systems. Part 2: An Example (in Polish). Pomiary Automatyka Robotyka (10) (2011) 84–91 (Metoda projektowania układów sterowania autonomicznych robotów mobilnych. Część 2. Przykład zastosowania).Google Scholar
  25. 25. Molfino, R., Zoppi, M., Zlatanov, D.: Reconfigurable swarm fixtures. In: ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. (June 22–24 2009) 730–735Google Scholar
  26. 26. Leonardo, L., Zoppi, M., Xiong, L., Gagliardi, S., Molfino, R.: Developing a New Concept of Self Reconfigurable Intelligent Swarm Fixtures. (2012) 321–331Google Scholar
  27. 27. de Leonardo, L., Zoppi, M., Li, X., Zlatanov, D., Molfino, R.: Swarmitfix: A multirobot-based reconfigurable fixture. Industrial Robot (2013) 320-328Google Scholar
  28. 28. Neumann, K.: US patent number 4732525 (1988)Google Scholar
  29. 29. Gagliardi, S., Li, X., Zoppi, M., de Leonardo, L., Molfino, R.: Adaptable Fixturing Heads for Swarm Fixtures: Discussion of Two Designs. (2012)Google Scholar
  30. 30. Zieliński, C., Kornuta, T., Trojanek, P., Winiarski, T., Walęcki, M.: Specification of a multi-agent robot-based reconfigurable fixture control system. Robot Motion & Control 2011 (Lecture Notes in Control & Information Sciences) 422 (2012) 171–182Google Scholar
  31. 31. Zieliński, C., Kasprzak, W., Kornuta, T., Szynkiewicz, W., Trojanek, P., Walęcki, M., Winiarski, T., Zielińska, T.: Control and programming of a multi-robot-based reconfigurable fixture. Industrial Robot: An International Journal 40(4) (2013) 329–336Google Scholar
  32. 32. Szynkiewicz, W., Zielińska, T., Kasprzak, W.: Robotized machining of big work pieces: Localization of supporting heads. Frontiers of Mechanical Engineering in China 5(4) (2010) 357–369Google Scholar
  33. 33. Zielińska, T., Kasprzak, W., Szynkiewicz, W., Zieliński, C.: Path planning for robotized mobile supports. Journal of Mechanism and Machine Theory 78 (2014) 51–64Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cezary Zieliński
    • 1
  • Tomasz Winiarski
    • 1
  • Tomasz Kornuta
    • 1
  1. 1.Warsaw University of TechnologyWarsawPoland

Personalised recommendations