Esophageal Clearance in Gastroesophageal Reflux

  • Maheen Hassan
  • Frederick W. Woodley
  • Hayat MousaEmail author


Gastroesophageal reflux is a normal physiologic process, with multiple mechanisms in place to prevent physiologic reflux from becoming pathologic. One such mechanism is esophageal clearance. Esophageal clearance is composed of two distinct phases: volume clearance and chemical clearance. Volume clearance utilizes swallowing and esophageal peristalsis to empty the esophagus of reflux bolus and virtually all acid. Chemical clearance neutralizes the residual acid film by saliva, either swallowed or secreted by the esophagus. Combined pH-multichannel intraluminal impedance is the best technique to measure both phases of clearance. Normal values for children have been established. If either phase of esophageal clearance is prolonged, the esophagus experiences increased acid exposure, and this can result in secondary complications. There are physiologic and disease states which can impact either or both of the clearance phases. They do so by impacting the swallow, esophageal peristalsis, esophageal motility, and composition or quantity of saliva. As a result, these patients are predisposed to gastroesophageal reflux disease.


Gastroesophageal reflux Acid reflux Esophageal clearance Volume clearance Bolus transit Chemical clearance Impedance Normal values Sleep Body position Pathophysiology Pediatrics 


  1. 1.
    Vandenplas Y, Hassall E. Mechanisms of gastroesophageal reflux and gastroesophageal reflux disease. J Pediatr Gastroenterol Nutr. 2002;35(2):119–36.PubMedCrossRefGoogle Scholar
  2. 2.
    Sherman PM, et al. A global, evidence-based consensus on the definition of gastroesophageal reflux disease in the pediatric population. Am J Gastroenterol. 2009;104(5):1278–95. quiz 1296PubMedCrossRefGoogle Scholar
  3. 3.
    Martigne L, et al. Prevalence and management of gastroesophageal reflux disease in children and adolescents: a nationwide cross-sectional observational study. Eur J Pediatr. 2012;171(12):1767–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Nelson SP, et al. Prevalence of symptoms of gastroesophageal reflux during childhood: a pediatric practice-based survey. Pediatric Practice Research Group. Arch Pediatr Adolesc Med. 2000;154(2):150–4.Google Scholar
  5. 5.
    Kawahara H, Dent J, Davidson G. Mechanisms responsible for gastroesophageal reflux in children. Gastroenterology. 1997;113(2):399–408.PubMedCrossRefGoogle Scholar
  6. 6.
    Werlin SL, et al. Mechanisms of gastroesophageal reflux in children. J Pediatr. 1980;97(2):244–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Helm JF. Esophageal acid clearance. J Clin Gastroenterol. 1986;8(Suppl 1):5–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Woodley FW, Fernandez S, Mousa H. Diurnal variation in the chemical clearance of acid gastroesophageal reflux in infants. Clin Gastroenterol Hepatol. 2007;5(1):37–43.PubMedCrossRefGoogle Scholar
  9. 9.
    Helm JF, et al. Effect of esophageal emptying and saliva on clearance of acid from the esophagus. N Engl J Med. 1984;310(5):284–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Helm JF, et al. Determinants of esophageal acid clearance in normal subjects. Gastroenterology. 1983;85(3):607–12.PubMedGoogle Scholar
  11. 11.
    Richter JE, et al. Relationship of radionuclide liquid bolus transport and esophageal manometry. J Lab Clin Med. 1987;109(2):217–24.PubMedGoogle Scholar
  12. 12.
    Phaosawasdi K, et al. Cholinergic effects on esophageal transit and clearance. Gastroenterology. 1981;81(5):915–20.PubMedGoogle Scholar
  13. 13.
    Kjellen G, Tibbling L. Influence of body position, dry and water swallows, smoking, and alcohol on esophageal acid clearing. Scand J Gastroenterol. 1978;13(3):283–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Kahrilas PJ, Dodds WJ, Hogan WJ. Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterology. 1988;94(1):73–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Bremner RM, et al. Pharyngeal swallowing. The major factor in clearance of esophageal reflux episodes. Ann Surg. 1993;218(3):364–9. discussion 369-70PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yazaki E, Sifrim D. Anatomy and physiology of the esophageal body. Dis Esophagus. 2012;25(4):292–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Holloway RH. Esophageal body motor response to reflux events: secondary peristalsis. Am J Med. 2000;108(Suppl 4a):20s–6s.PubMedCrossRefGoogle Scholar
  18. 18.
    Anggiansah A, et al. Primary peristalsis is the major acid clearance mechanism in reflux patients. Gut. 1994;35(11):1536–42.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sarosiek J, et al. Enhancement of salivary esophagoprotection: rationale for a physiological approach to gastroesophageal reflux disease. Gastroenterology. 1996;110(3):675–81.PubMedCrossRefGoogle Scholar
  20. 20.
    Abdulnour-Nakhoul S, et al. Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands. Am J Physiol Regul Integr Comp Physiol. 2011;301(1):R83–96.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Yandrapu H, et al. Role of saliva in esophageal defense: implications in patients with nonerosive reflux disease. Am J Med Sci. 2015;349(5):385–91.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Shay S, et al. Twenty-four hour ambulatory simultaneous impedance and pH monitoring: a multicenter report of normal values from 60 healthy volunteers. Am J Gastroenterol. 2004;99(6):1037–43.PubMedCrossRefGoogle Scholar
  23. 23.
    Boyd DD, Carney CN, Powell DW. Neurohumoral control of esophageal epithelial electrolyte transport. Am J Phys. 1980;239(1):G5–11.Google Scholar
  24. 24.
    Meyers RL, Orlando RC. In vivo bicarbonate secretion by human esophagus. Gastroenterology. 1992;103(4):1174–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Strobel CT, et al. Correlation of esophageal lengths in children with height: application to the Tuttle test without prior esophageal manometry. J Pediatr. 1979;94(1):81–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Wenzl TG, et al. Gastroesophageal reflux and respiratory phenomena in infants: status of the intraluminal impedance technique. J Pediatr Gastroenterol Nutr. 1999;28(4):423–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Woodley FW, et al. Children with cystic fibrosis have prolonged chemical clearance of acid reflux compared to symptomatic children without cystic fibrosis. Dig Dis Sci. 2014;59(3):623–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Woodley FW, et al. Chemical clearance in infants and children with Acid reflux in the physiologic range. J Pediatr Gastroenterol Nutr. 2015;60(6):783–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Frazzoni M, et al. Esophageal chemical clearance is impaired in gastro-esophageal reflux disease--a 24-h impedance-pH monitoring assessment. Neurogastroenterol Motil. 2013;25(5):399–406. e295PubMedCrossRefGoogle Scholar
  30. 30.
    Tutuian R, et al. Esophageal function testing with combined multichannel intraluminal impedance and manometry: multicenter study in healthy volunteers. Clin Gastroenterol Hepatol. 2003;1(3):174–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Martinucci I, et al. Esophageal baseline impedance levels in patients with pathophysiological characteristics of functional heartburn. Neurogastroenterol Motil. 2014;26(4):546–55.PubMedCrossRefGoogle Scholar
  32. 32.
    Cho YK, et al. The relationship of the post-reflux swallow-induced peristaltic wave index and esophageal baseline impedance with gastroesophageal reflux disease symptoms. J Neurogastroenterol Motil. 2017;23:237–44.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Sankaran J, et al. Effect of Severity of Esophageal Acidification on Sleep vs Wake Periods in Infants Presenting with Brief Resolved Unexplained Events. J Pediatr. 2016;179:42–48.e1.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Orr WC, Johnson LF, Robinson MG. Effect of sleep on swallowing, esophageal peristalsis, and acid clearance. Gastroenterology. 1984;86(5 Pt 1):814–9.PubMedGoogle Scholar
  35. 35.
    Orr WC, Robinson MG, Johnson LF. The effect of esophageal acid volume on arousals from sleep and acid clearance. Chest. 1991;99(2):351–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Orr WC, Johnson LF. Responses to different levels of esophageal acidification during waking and sleep. Dig Dis Sci. 1998;43(2):241–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Orr WC, et al. Proximal migration of esophageal acid perfusions during waking and sleep. Am J Gastroenterol. 2000;95(1):37–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Orr WC, Robinson MG, Johnson LF. Acid clearance during sleep in the pathogenesis of reflux esophagitis. Dig Dis Sci. 1981;26(5):423–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Sondheimer JM. Clearance of spontaneous gastroesophageal reflux in awake and sleeping infants. Gastroenterology. 1989;97(4):821–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Lear CS, Flanagan JB Jr, Moorrees CF. The frequency of deglutition in man. Arch Oral Biol. 1965;10:83–100.PubMedCrossRefGoogle Scholar
  41. 41.
    Pasricha PJ. Effect of sleep on gastroesophageal physiology and airway protective mechanisms. Am J Med. 2003;115(Suppl 3A):114s–8s.PubMedCrossRefGoogle Scholar
  42. 42.
    Dantas RO, Aben-Athar CG. Aspects of sleep effects on the digestive tract. Arq Gastroenterol. 2002;39(1):55–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Qureshi A, et al. The role of sleep in the modulation of gastroesophageal reflux and symptoms in NICU neonates. Pediatr Neurol. 2015;53(3):226–32.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Khan BA, et al. Effect of bed head elevation during sleep in symptomatic patients of nocturnal gastroesophageal reflux. J Gastroenterol Hepatol. 2012;27(6):1078–82.PubMedCrossRefGoogle Scholar
  45. 45.
    Khoury RM, et al. Influence of spontaneous sleep positions on nighttime recumbent reflux in patients with gastroesophageal reflux disease. Am J Gastroenterol. 1999;94(8):2069–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang X, et al. Esophageal motility in the supine and upright positions for liquid and solid swallows through high-resolution manometry. J Neurogastroenterol Motil. 2013;19(4):467–72.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kaye MD, Wexler RM. Alteration of esophageal peristalsis by body position. Dig Dis Sci. 1981;26(10):897–901.PubMedCrossRefGoogle Scholar
  48. 48.
    Dooley CP, Schlossmacher B, Valenzuela JE. Modulation of esophageal peristalsis by alterations of body position. Effect of bolus viscosity. Dig Dis Sci. 1989;34(11):1662–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Chang FY, et al. Alteration of distal esophageal motor functions on different body positions. Hepato-Gastroenterology. 1996;43(9):510–4.PubMedGoogle Scholar
  50. 50.
    Sears VW Jr, Castell JA, Castell DO. Comparison of effects of upright versus supine body position and liquid versus solid bolus on esophageal pressures in normal humans. Dig Dis Sci. 1990;35(7):857–64.PubMedCrossRefGoogle Scholar
  51. 51.
    Simren M, et al. Relevance of ineffective oesophageal motility during oesophageal acid clearance. Gut. 2003;52(6):784–90.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Anggiansah A, et al. Oesophageal motor responses to gastro-oesophageal reflux in healthy controls and reflux patients. Gut. 1997;41(5):600–5.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cho YK, et al. Impaired esophageal bolus transit in patients with gastroesophageal reflux disease and abnormal esophageal Acid exposure. Gut Liver. 2012;6(4):440–5.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Schoeman MN, Holloway RH. Integrity and characteristics of secondary oesophageal peristalsis in patients with gastro-oesophageal reflux disease. Gut. 1995;36(4):499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Iwakiri K, et al. Defective triggering of secondary peristalsis in patients with non-erosive reflux disease. J Gastroenterol Hepatol. 2007;22(12):2208–11.PubMedCrossRefGoogle Scholar
  56. 56.
    Allen ML, Castell JA, DiMarino AJ Jr. Mechanisms of gastroesophageal acid reflux and esophageal acid clearance in heartburn patients. Am J Gastroenterol. 1996;91(9):1739–44.PubMedGoogle Scholar
  57. 57.
    Aben-Athar CG, Dantas RO. Primary and secondary esophageal contractions in patients with gastroesophageal reflux disease. Braz J Med Biol Res. 2006;39(8):1027–31.PubMedCrossRefGoogle Scholar
  58. 58.
    Gunasingam N, et al. Update on therapeutic interventions for the management of achalasia. J Gastroenterol Hepatol. 2016;31(8):1422–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Kraichely RE, Farrugia G. Achalasia: physiology and etiopathogenesis. Dis Esophagus. 2006;19(4):213–23.PubMedCrossRefGoogle Scholar
  60. 60.
    Pohl D, Tutuian R. Achalasia: an overview of diagnosis and treatment. J Gastrointestin Liver Dis. 2007;16(3):297–303.PubMedGoogle Scholar
  61. 61.
    Tutuian R, et al. Clearance mechanisms of the aperistaltic oesophagus: the “pump gun” hypothesis. Gut. 2006;55(4):584–5.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Tutuian R, Castell DO. Combined multichannel intraluminal impedance and manometry clarifies esophageal function abnormalities: study in 350 patients. Am J Gastroenterol. 2004;99(6):1011–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Conchillo JM, et al. Assessment of oesophageal emptying in achalasia patients by intraluminal impedance monitoring. Neurogastroenterol Motil. 2006;18(11):971–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Agrawal A, et al. Manometry and impedance characteristics of achalasia. Facts and myths. J Clin Gastroenterol. 2008;42(3):266–70.PubMedGoogle Scholar
  65. 65.
    Brasseur JG, Dodds WJ. Interpretation of intraluminal manometric measurements in terms of swallowing mechanics. Dysphagia. 1991;6(2):100–19.PubMedCrossRefGoogle Scholar
  66. 66.
    Fox M. Multiple rapid swallowing in idiopathic achalasia: from conventional to high resolution manometry. Neurogastroenterol Motil. 2007;19(9):780–1. author reply 782PubMedCrossRefGoogle Scholar
  67. 67.
    Bharadwaj S, et al. Gastrointestinal manifestations, malnutrition, and role of enteral and parenteral nutrition in patients with scleroderma. J Clin Gastroenterol. 2015;49(7):559–64.PubMedCrossRefGoogle Scholar
  68. 68.
    Kahaleh B. Vascular disease in scleroderma: mechanisms of vascular injury. Rheum Dis Clin N Am. 2008;34(1):57–71. viCrossRefGoogle Scholar
  69. 69.
    Sjogren RW. Gastrointestinal motility disorders in scleroderma. Arthritis Rheum. 1994;37(9):1265–82.PubMedCrossRefGoogle Scholar
  70. 70.
    Ntoumazios SK, et al. Esophageal involvement in scleroderma: gastroesophageal reflux, the common problem. Semin Arthritis Rheum. 2006;36(3):173–81.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Bestetti A, et al. Esophageal scintigraphy with a semisolid meal to evaluate esophageal dysmotility in systemic sclerosis and Raynaud’s phenomenon. J Nucl Med. 1999;40(1):77–84.PubMedGoogle Scholar
  72. 72.
    Basilisco G, et al. Oesophageal acid clearance in patients with systemic sclerosis: effect of body position. Eur J Gastroenterol Hepatol. 1996;8(3):205–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Luciano L, et al. Esophageal and anorectal involvement in systemic sclerosis: a systematic assessment with high resolution manometry. Clin Exp Rheumatol. 2016;34(Suppl 100(5)):63–9.PubMedGoogle Scholar
  74. 74.
    Murphy JR, et al. Prolonged clearance is the primary abnormal reflux parameter in patients with progressive systemic sclerosis and esophagitis. Dig Dis Sci. 1992;37(6):833–41.PubMedCrossRefGoogle Scholar
  75. 75.
    Raja J, et al. High-resolution oesophageal manometry and 24-hour impedance-pH study in systemic sclerosis patients: association with clinical features, symptoms and severity. Clin Exp Rheumatol. 2016;34(Suppl 100(5)):115–21.PubMedGoogle Scholar
  76. 76.
    Duraj V, et al. Esophageal damages in systemic scleroderma. Med Arh. 2007;61(1):47–8.PubMedGoogle Scholar
  77. 77.
    Weber P, et al. Twenty-four hour intraesophageal pH monitoring in children and adolescents with scleroderma and mixed connective tissue disease. J Rheumatol. 2000;27(11):2692–5.PubMedGoogle Scholar
  78. 78.
    Aceves SS, Ackerman SJ. Relationships between eosinophilic inflammation, tissue remodeling, and fibrosis in eosinophilic esophagitis. Immunol Allergy Clin N Am. 2009;29(1):197–211. xiii-xivCrossRefGoogle Scholar
  79. 79.
    Furuta GT, et al. Eosinophilic esophagitis in children and adults: a systematic review and consensus recommendations for diagnosis and treatment. Gastroenterology. 2007;133(4):1342–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Straumann A, et al. Pediatric and adult eosinophilic esophagitis: similarities and differences. Allergy. 2012;67(4):477–90.PubMedCrossRefGoogle Scholar
  81. 81.
    Rodrigues M, et al. Clinical manifestations, treatment, and outcomes of children and adolescents with eosinophilic esophagitis. J Pediatr. 2013;89(2):197–203.CrossRefGoogle Scholar
  82. 82.
    Hirano I, Aceves SS. Clinical implications and pathogenesis of esophageal remodeling in eosinophilic esophagitis. Gastroenterol Clin N Am. 2014;43(2):297–316.CrossRefGoogle Scholar
  83. 83.
    Cheng L, et al. Hydrogen peroxide reduces lower esophageal sphincter tone in human esophagitis. Gastroenterology. 2005;129(5):1675–85.PubMedCrossRefGoogle Scholar
  84. 84.
    Cheng E, Souza RF, Spechler SJ. Eosinophilic esophagitis: interactions with gastroesophageal reflux disease. Gastroenterol Clin N Am. 2014;43(2):243–56.CrossRefGoogle Scholar
  85. 85.
    Tobey NA, et al. Dilated intercellular spaces: a morphological feature of acid reflux--damaged human esophageal epithelium. Gastroenterology. 1996;111(5):1200–5.PubMedCrossRefGoogle Scholar
  86. 86.
    Ravelli A, et al. Dilated intercellular spaces in eosinophilic esophagitis. J Pediatr Gastroenterol Nutr. 2014;59(5):589–93.PubMedCrossRefGoogle Scholar
  87. 87.
    van Rhijn BD, et al. Prevalence of esophageal motility abnormalities increases with longer disease duration in adult patients with eosinophilic esophagitis. Neurogastroenterol Motil. 2014;26(9):1349–55.PubMedCrossRefGoogle Scholar
  88. 88.
    Colizzo JM, Clayton SB, Richter JE. Intrabolus pressure on high-resolution manometry distinguishes fibrostenotic and inflammatory phenotypes of eosinophilic esophagitis. Dis Esophagus. 2016;29(6):551–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Nurko S, Rosen R, Furuta GT. Esophageal dysmotility in children with eosinophilic esophagitis: a study using prolonged esophageal manometry. Am J Gastroenterol. 2009;104(12):3050–7.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Nurko S, Rosen R. Esophageal dysmotility in patients who have eosinophilic esophagitis. Gastrointest Endosc Clin N Am. 2008;18(1):73–89. ixPubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Roman S, et al. Manometric features of eosinophilic esophagitis in esophageal pressure topography. Neurogastroenterol Motil. 2011;23(3):208–14. e111PubMedCrossRefGoogle Scholar
  92. 92.
    Martin Martin L, et al. Esophageal motor abnormalities in eosinophilic esophagitis identified by high-resolution manometry. J Gastroenterol Hepatol. 2011;26(9):1447–50.PubMedGoogle Scholar
  93. 93.
    Kwiatek MA, et al. Mechanical properties of the esophagus in eosinophilic esophagitis. Gastroenterology. 2011;140(1):82–90.PubMedCrossRefGoogle Scholar
  94. 94.
    Nicodeme F, et al. Esophageal distensibility as a measure of disease severity in patients with eosinophilic esophagitis. Clin Gastroenterol Hepatol. 2013;11(9):1101–7. e1PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Robinson NB, DiMango E. Prevalence of gastroesophageal reflux in cystic fibrosis and implications for lung disease. Ann Am Thorac Soc. 2014;11(6):964–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Mousa HM, Woodley FW. Gastroesophageal reflux in cystic fibrosis: current understandings of mechanisms and management. Curr Gastroenterol Rep. 2012;14(3):226–35.PubMedCrossRefGoogle Scholar
  97. 97.
    Blondeau K, et al. Characteristics of gastroesophageal reflux and potential risk of gastric content aspiration in children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2010;50(2):161–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Winans CS, Harris LD. Quantitation of lower esophageal sphincter competence. Gastroenterology. 1967;52(5):773–8.PubMedGoogle Scholar
  99. 99.
    Mousa HM, et al. Esophageal impedance monitoring for gastroesophageal reflux. J Pediatr Gastroenterol Nutr. 2011;52(2):129–39.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Shin MS. Esophageal pH and combined impedance-pH monitoring in children. Pediatr Gastroenterol Hepatol Nutr. 2014;17(1):13–22.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Proctor GB. The physiology of salivary secretion. Periodontol 2000. 2016;70(1):11–25.PubMedCrossRefGoogle Scholar
  102. 102.
    da Silva Modesto KB, et al. Salivary flow rate and biochemical composition analysis in stimulated whole saliva of children with cystic fibrosis. Arch Oral Biol. 2015;60(11):1650–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Shawyer AC, et al. Quality of reporting of the literature on gastrointestinal reflux after repair of esophageal atresia-tracheoesophageal fistula. J Pediatr Surg. 2015;50(7):1099–103.PubMedCrossRefGoogle Scholar
  104. 104.
    Little DC, et al. Long-term analysis of children with esophageal atresia and tracheoesophageal fistula. J Pediatr Surg. 2003;38(6):852–6.PubMedCrossRefGoogle Scholar
  105. 105.
    Engum SA, et al. Analysis of morbidity and mortality in 227 cases of esophageal atresia and/or tracheoesophageal fistula over two decades. Arch Surg. 1995;130(5):502–8. discussion 508-9PubMedCrossRefGoogle Scholar
  106. 106.
    Al-Shraim MM, et al. Ultrastructural changes of the smooth muscle in esophageal atresia. Ultrastruct Pathol. 2015;39(6):413–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Dutta HK, Mathur M, Bhatnagar V. A histopathological study of esophageal atresia and tracheoesophageal fistula. J Pediatr Surg. 2000;35(3):438–41.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Boleken M, et al. Reduced neuronal innervation in the distal end of the proximal esophageal atretic segment in cases of esophageal atresia with distal tracheoesophageal fistula. World J Surg. 2007;31(7):1512–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Zuccarello B, et al. Intramural ganglion structures in esophageal atresia: a morphologic and immunohistochemical study. Int J Pediatr. 2009;2009:695837.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Nakazato Y, Landing BH, Wells TR. Abnormal Auerbach plexus in the esophagus and stomach of patients with esophageal atresia and tracheoesophageal fistula. J Pediatr Surg. 1986;21(10):831–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Midrio P, et al. Reduction of interstitial cells of Cajal in esophageal atresia. J Pediatr Gastroenterol Nutr. 2010;51(5):610–7.PubMedCrossRefGoogle Scholar
  112. 112.
    Mikami DJ, Murayama KM. Physiology and pathogenesis of gastroesophageal reflux disease. Surg Clin North Am. 2015;95(3):515–25.PubMedCrossRefGoogle Scholar
  113. 113.
    Herregods TV, Bredenoord AJ, Smout AJ. Pathophysiology of gastroesophageal reflux disease: new understanding in a new era. Neurogastroenterol Motil. 2015;27(9):1202–13.PubMedCrossRefGoogle Scholar
  114. 114.
    Banjar HH, Al-Nassar SI. Gastroesophageal reflux following repair of esophageal atresia and tracheoesophageal fistula. Saudi Med J. 2005;26(5):781–5.PubMedGoogle Scholar
  115. 115.
    Tong S, Mallitt KA, Krishnan U. Evaluation of gastroesophageal reflux by combined multichannel intraluminal impedance and pH monitoring and esophageal motility patterns in children with esophageal atresia. Eur J Pediatr Surg. 2016;26(4):322–31.PubMedCrossRefGoogle Scholar
  116. 116.
    Catalano P, et al. Gastroesophageal reflux in young children treated for esophageal atresia: evaluation with pH-multichannel intraluminal impedance. J Pediatr Gastroenterol Nutr. 2011;52(6):686–90.PubMedCrossRefGoogle Scholar
  117. 117.
    Lemoine C, et al. Characterization of esophageal motility following esophageal atresia repair using high-resolution esophageal manometry. J Pediatr Gastroenterol Nutr. 2013;56(6):609–14.PubMedCrossRefGoogle Scholar
  118. 118.
    Di Pace MR, et al. Evaluation of esophageal motility and reflux in children treated for esophageal atresia with the use of combined multichannel intraluminal impedance and pH monitoring. J Pediatr Surg. 2011;46(3):443–51.PubMedCrossRefGoogle Scholar
  119. 119.
    Iwanczak BM, et al. Assessment of clinical symptoms and multichannel intraluminal impedance and pH monitoring in children after thoracoscopic repair of esophageal atresia and distal tracheoesophageal fistula. Adv Clin Exp Med. 2016;25(5):917–22.PubMedCrossRefGoogle Scholar
  120. 120.
    Soyer T, et al. Results of multichannel intraluminal impedance pH metry in symptomatic children with normal pH metry findings. Eur J Pediatr Surg. 2014;24(6):514–8.PubMedGoogle Scholar
  121. 121.
    van Wijk M, et al. Evaluation of gastroesophageal function and mechanisms underlying gastroesophageal reflux in infants and adults born with esophageal atresia. J Pediatr Surg. 2013;48(12):2496–505.PubMedCrossRefGoogle Scholar
  122. 122.
    Frohlich T, et al. Combined esophageal multichannel intraluminal impedance and pH monitoring after repair of esophageal atresia. J Pediatr Gastroenterol Nutr. 2008;47(4):443–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Tovar JA, et al. Ambulatory 24-hour manometric and pH metric evidence of permanent impairment of clearance capacity in patients with esophageal atresia. J Pediatr Surg. 1995;30(8):1224–31.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Roman S, Kahrilas PJ. Mechanisms of Barrett's oesophagus (clinical): LOS dysfunction, hiatal hernia, peristaltic defects. Best Pract Res Clin Gastroenterol. 2015;29(1):17–28.PubMedCrossRefGoogle Scholar
  125. 125.
    Banki F, et al. Barrett's esophagus in females: a comparative analysis of risk factors in females and males. Am J Gastroenterol. 2005;100(3):560–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Lord RV, et al. Hiatal hernia, lower esophageal sphincter incompetence, and effectiveness of Nissen fundoplication in the spectrum of gastroesophageal reflux disease. J Gastrointest Surg. 2009;13(4):602–10.PubMedCrossRefGoogle Scholar
  127. 127.
    Savarino E, et al. Oesophageal motility and bolus transit abnormalities increase in parallel with the severity of gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2011;34(4):476–86.PubMedCrossRefGoogle Scholar
  128. 128.
    Namiot Z, et al. Interrelationship between esophageal challenge with mechanical and chemical stimuli and salivary protective mechanisms. Am J Gastroenterol. 1994;89(4):581–7.PubMedGoogle Scholar
  129. 129.
    Krarup AL, et al. Proximal and distal esophageal sensitivity is decreased in patients with Barrett's esophagus. World J Gastroenterol. 2011;17(4):514–21.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Gutschow CA, et al. NERD, GERD, and Barrett's esophagus: role of acid and non-acid reflux revisited with combined pH-impedance monitoring. Dig Dis Sci. 2008;53(12):3076–81.PubMedCrossRefGoogle Scholar
  131. 131.
    Savarino E, et al. Characteristics of gastro-esophageal reflux episodes in Barrett's esophagus, erosive esophagitis and healthy volunteers. Neurogastroenterol Motil. 2010;22(10):1061–e280.PubMedCrossRefGoogle Scholar
  132. 132.
    Lottrup C, et al. Esophageal acid clearance during random swallowing is faster in patients with Barrett's esophagus than in healthy controls. J Neurogastroenterol Motil. 2016;22(4):630–42.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Mittal RK, Lange RC, McCallum RW. Identification and mechanism of delayed esophageal acid clearance in subjects with hiatus hernia. Gastroenterology. 1987;92(1):130–5.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Kasapidis P, et al. Effect of hiatal hernia on esophageal manometry and pH-metry in gastroesophageal reflux disease. Dig Dis Sci. 1995;40(12):2724–30.PubMedCrossRefGoogle Scholar
  135. 135.
    Ye P, et al. Esophageal motility in patients with sliding hiatal hernia with reflux esophagitis. Chin Med J. 2008;121(10):898–903.PubMedGoogle Scholar
  136. 136.
    Patti MG, et al. Hiatal hernia size affects lower esophageal sphincter function, esophageal acid exposure, and the degree of mucosal injury. Am J Surg. 1996;171(1):182–6.PubMedCrossRefGoogle Scholar
  137. 137.
    Emerenziani S, et al. Effect of hiatal hernia on proximal oesophageal acid clearance in gastro-oesophageal reflux disease patients. Aliment Pharmacol Ther. 2006;23(6):751–7.PubMedCrossRefGoogle Scholar
  138. 138.
    Salvatore S, et al. Gastroesophageal reflux disease in infants: how much is predictable with questionnaires, pH-metry, endoscopy and histology? J Pediatr Gastroenterol Nutr. 2005;40(2):210–5.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Cucchiara S, et al. Value of the 24 hour intraoesophageal pH monitoring in children. Gut. 1990;31(2):129–33.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Rosen R, Lord C, Nurko S. The sensitivity of multichannel intraluminal impedance and the pH probe in the evaluation of gastroesophageal reflux in children. Clin Gastroenterol Hepatol. 2006;4(2):167–72.PubMedCrossRefGoogle Scholar
  141. 141.
    Woodley FW, Mousa H. Acid gastroesophageal reflux reports in infants: a comparison of esophageal pH monitoring and multichannel intraluminal impedance measurements. Dig Dis Sci. 2006;51(11):1910–6.PubMedCrossRefGoogle Scholar
  142. 142.
    Wenzl TG, et al. Association of apnea and nonacid gastroesophageal reflux in infants: Investigations with the intraluminal impedance technique. Pediatr Pulmonol. 2001;31(2):144–9.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Vikneswaran N, Murray JA. Discounting the duration of bolus exposure in impedance testing underestimates acid reflux. BMC Gastroenterol. 2016;16(1):60.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Loots CM, et al. Addition of pH-impedance monitoring to standard pH monitoring increases the yield of symptom association analysis in infants and children with gastroesophageal reflux. J Pediatr. 2009;154(2):248–52.PubMedCrossRefGoogle Scholar
  145. 145.
    Hirano I, Richter JE. ACG practice guidelines: esophageal reflux testing. Am J Gastroenterol. 2007;102(3):668–85.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maheen Hassan
    • 1
  • Frederick W. Woodley
    • 2
    • 3
  • Hayat Mousa
    • 1
    Email author
  1. 1.Department of Pediatric GastroenterologyUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of Pediatric GastroenterologyNationwide Children’s HospitalColumbusUSA
  3. 3.Department of PediatricsThe Ohio State University College of MedicineColumbusUSA

Personalised recommendations