A Combined Statistical Shape Model of the Scalp and Skull of the Human Head

  • Femke Danckaers
  • Daniël Lacko
  • Stijn Verwulgen
  • Guido De Bruyne
  • Toon Huysmans
  • Jan Sijbers
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 591)

Abstract

In this paper, we describe a framework to build a combined statistical shape model (SSM) of the outer surface of the scalp and the inner and outer surface of the skull of the human head. Such an SSM is a valuable tool when designing headgear, as it captures the variability of head geometry of a given population, enabling detailed analysis of the relation between the shape of the scalp and the skull. A combined SSM of the head may allow to work towards population based Finite Element (FE) models e.g. for safety and comfort predictions when wearing headgear. Therefore, a correspondence between the skull and scalp surfaces, originating from MRI scans, is determined using elastic surface registration. The combined SSM shown to be compact, to be able to generalize to unseen instances by adjusting the shape parameters and to be shape specific. Therefore, we can assure that, by adjusting the shape parameters, a broad range of realistic head shapes can be formed.

Keywords

Statistical shape model Human head Scalp Skull Headgear SSM 

Notes

Acknowledgements

This work was supported by the Agency for Innovation by Science and Technology in Flanders (IWT-SB 141520 and IWT 140881).

References

  1. 1.
    Lacko, D., et al.: Evaluation of an anthropometric shape model of the human scalp. Appl. Ergon. 48, 70–85 (2015)CrossRefGoogle Scholar
  2. 2.
    Bredbenner, T.L., Eliason, T.D., Francis, W.L., McFarland, J.M., Merkle, A.C., Nicolella, D.P.: Development and validation of a statistical shape modeling-based finite element model of the cervical spine under low-level multiple direction loading conditions. Front. Bioeng. Biotechnol. 2(November), 58 (2014)Google Scholar
  3. 3.
    Jacob, A., et al.: Evaluation of helmet protection during impact of head to ground and impact of an object to head using finite element analysis. J. Saf. Eng. 5(1), 8–16 (2016)CrossRefGoogle Scholar
  4. 4.
    Mustafa, H., Pang, T.Y., Perret-Ellena, T., Subic, A.: Finite element bicycle helmet models development. Procedia Technol. 20(July), 91–97 (2015)CrossRefGoogle Scholar
  5. 5.
    Pintar, F.A., Philippens, M.M.G.M., Zhang, J., Yoganandan, N.: Methodology to determine skull bone and brain responses from ballistic helmet-to-head contact loading using experiments and finite element analysis. Med. Eng. Phys. 35(11), 1682–1687 (2013)CrossRefGoogle Scholar
  6. 6.
    Ponce, E., Ponce, D., Andresen, M.: Modeling heading in adult soccer players. IEEE Comput. Graph. Appl. 34(5), 8–13 (2014)CrossRefGoogle Scholar
  7. 7.
    Valdes-Hernandez, P.A., et al.: Approximate average head models for EEG source imaging. J. Neurosci. Methods 185(1), 125–132 (2009)CrossRefGoogle Scholar
  8. 8.
    Lei, Z., Yang, J.J., Zhuang, Z.: Headform and N95 filtering facepiece respirator interaction: contact pressure simulation and validation. J. Occup. Environ. Hyg. 9(1), 46–58 (2012)CrossRefGoogle Scholar
  9. 9.
    Asgharpour, Z., Baumgartner, D., Willinger, R., Graw, M., Peldschus, S.: The validation and application of a finite element human head model for frontal skull fracture analysis. J. Mech. Behav. Biomed. Mater. 33, 16–23 (2014)CrossRefGoogle Scholar
  10. 10.
    Tinard, V., Deck, C., Willinger, R.: New methodology for improvement of helmet performances during impacts with regards to biomechanical criteria. Mater. Des. 37, 79–88 (2012)CrossRefGoogle Scholar
  11. 11.
    Klein, K.F., Hu, J., Reed, M.P., Hoff, C.N., Rupp, J.D.: Development and validation of statistical models of femur geometry for use with parametric finite element models. Ann. Biomed. Eng. 43(10), 2503–2514 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhang, L., Makwana, R., Sharma, S.: Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet. Front. Neurol. 4(August), 1–12 (2013)Google Scholar
  13. 13.
    Xi, P., Shu, C.: Consistent parameterization and statistical analysis of human head scans. Vis. Comput. 25(9), 863–871 (2009)CrossRefGoogle Scholar
  14. 14.
    Meunier, P., Shu, C., Xi, P.: Revealing the internal structure of human variability for design purposes. In: 17th World Congress on Ergonomics (2009)Google Scholar
  15. 15.
    Claes, P., Vandermeulen, D., De Greef, S., Willems, G., Suetens, P.: Craniofacial reconstruction using a combined statistical model of face shape and soft tissue depths: methodology and validation. Forensic Sci. Int. 159, S147–S158 (2006)CrossRefGoogle Scholar
  16. 16.
    Capetillo-Cunliffe, L.: Loni: Laboratory of Neuro Imaging (2007)Google Scholar
  17. 17.
    Kazemi, K., Noorizadeh, N.: Quantitative comparison of SPM, FSL, and brainsuite for brain MR image segmentation. J. Biomed. Phys. Eng. 4, 13–26 (2014)Google Scholar
  18. 18.
    Danckaers, F., Huysmans, T., Lacko, D., Ledda, A., Verwulgen, S., Van Dongen, S., Sijbers, J.: Correspondence preserving elastic surface registration with shape model prior. In: Proceedings - International Conference on Pattern Recognition (2014)Google Scholar
  19. 19.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  20. 20.
    Davies, R.H., Twining, C.J., Cootes, T.F., Waterton, J.C., Taylor, C.J.: A minimum description length approach to statistical shape modeling. IEEE Trans. Med. Imaging 21(5), 525–537 (2002)CrossRefMATHGoogle Scholar
  21. 21.
    Zihua, S.: Statistical Shape Modelling: Automatic Shape Model Building. University College London (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Femke Danckaers
    • 1
  • Daniël Lacko
    • 2
  • Stijn Verwulgen
    • 2
  • Guido De Bruyne
    • 2
  • Toon Huysmans
    • 1
  • Jan Sijbers
    • 1
  1. 1.imec - Vision Lab, Department of Physics, Faculty of SciencesUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Product Development, Faculty of Design SciencesUniversity of AntwerpAntwerpBelgium

Personalised recommendations