Advertisement

Predicting Worst-Case Execution Time Trends in Long-Lived Real-Time Systems

  • Xiaotian Dai
  • Alan Burns
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10300)

Abstract

In some long-lived real-time systems, it is not uncommon to see that the execution times of some tasks may exhibit trends. For hard and firm real-time systems, it is important to ensure these trends will not jeopardize the system. In this paper, we first introduce the notion of dynamic worst-case execution time (dWCET), which forms a new perspective that could help a system to predict potential timing failures and optimize resource allocations. We then have a comprehensive review of trend prediction methods. In the evaluation, we make a comparative study of dWCET trend prediction. Four prediction methods, combined with three data selection processes, are applied in an evaluation framework. The result shows the importance of applying data preprocessing and suggests that non-parametric estimators perform better than parametric methods.

Keywords

Worst-case execution time Trend prediction Linear regression Extreme value theory Support vector regression 

References

  1. 1.
    Akritas, M.G., Murphy, S.A., LaValley, M.P.: The Theil-sen estimator with doubly censored data and applications to astronomy. J. Am. Stat. Assoc. 90(429), 170–177 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24, pp. 180–190. Cambridge Univerisity Press (1928)Google Scholar
  3. 3.
    Frei, C., Schär, C.: Detection probability of trends in rare events: theory and application to heavy precipitation in the Alpine region. J. Climate 14(7), 1568–1584 (2001)CrossRefGoogle Scholar
  4. 4.
    Hess, A., Iyer, H., Malm, W.: Linear trend analysis: a comparison of methods. Atmos. Environ. 35(30), 5211–5222 (2001)CrossRefGoogle Scholar
  5. 5.
    Hill, T., O’Connor, M., Remus, W.: Neural network models for time series forecasts. Manage. Sci. 42(7), 1082–1092 (1996)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kunkel, K.E., Andsager, K., Easterling, D.R.: Long-term trends in extreme precipitation events over the conterminous United States and Canada. J. Climate 12(8), 2515–2527 (1999)CrossRefGoogle Scholar
  7. 7.
    Lu, C., Stankovic, J.A., Son, S.H., Tao, G.: Feedback control real-time scheduling: framework, modeling, and algorithms. Real Time Syst. 23(1–2), 85–126 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    McLeod, A.I., Hipel, K.W., Bodo, B.A.: Trend analysis methodology for water quality time series. Environmetrics 2(2), 169–200 (1991)CrossRefGoogle Scholar
  9. 9.
    Qi, M., Zhang, G.P.: Trend time-series modeling and forecasting with neural networks. IEEE Trans. Neural Netw. 19(5), 808–816 (2008)CrossRefGoogle Scholar
  10. 10.
    Reinsel, G.C., Tiao, G.C.: Impact of chlorofluoromethanes on stratospheric ozone: a statistical analysis of ozone data for trends. J. Am. Statist. Assoc. 82(397), 20–30 (1987)Google Scholar
  11. 11.
    Sen, P.K.: Estimates of the regression coefficient based on Kendall’s tau. J. Am. Statist. Assoc. 63(324), 1379–1389 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Shang, H., Yan, J., Gebremichael, M., Ayalew, S.M.: Trend analysis of extreme precipitation in the Northwestern Highlands of Ethiopia with a case study of Debre Markos. Hydrol. Earth Syst. Sci. 15(6), 1937–1944 (2011)CrossRefGoogle Scholar
  13. 13.
    Smith, R.L.: Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Statist. Sci. 4(4), 367–377 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statist. Comput. 14(3), 199–222 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Stankovic, J.A., Lu, C., Son, S.H., Tao, G.: The case for feedback control real-time scheduling. In: Proceedings of the 11th Euromicro Conference on Real-Time Systems, pp. 11–20. IEEE (1999)Google Scholar
  16. 16.
    Tiao, G.: Use of statistical methods in the analysis of environmental data. Am. Statist. 37(4b), 459–470 (1983)CrossRefGoogle Scholar
  17. 17.
    Visser, H., Molenaar, J.: Trend estimation and regression analysis in climatological time series: an application of structural time series models and the Kalman filter. J. Climate 8(5), 969–979 (1995)CrossRefGoogle Scholar
  18. 18.
    Wilhelm, R., Engblom, J., Ermedahl, A., et al.: The worst-case execution-time problem overview of methods and survey of tools. ACM Trans. Embedded Comput. Syst. (TECS) 7(3), 36 (2008)Google Scholar
  19. 19.
    Zhang, G.P., Qi, M.: Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 160(2), 501–514 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhang, X., Harvey, K.D., Hogg, W., Yuzyk, T.R.: Trends in Canadian streamflow. Water Res. Res. 37(4), 987–998 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations