An Emerging Framework to Inform Effective Design of Human-Machine Interfaces for Older Adults Using Connected Autonomous Vehicles

  • Phillip L. Morgan
  • Alexandra Voinescu
  • Craig Williams
  • Praminda Caleb-Solly
  • Chris Alford
  • Ian Shergold
  • Graham Parkhurst
  • Anthony Pipe
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 597)


Connected autonomous vehicles (CAVs) represent an exciting opportunity for wider access to mobility; especially for individuals unable to drive manual vehicles. Interaction with CAVs will be through human-machine interfaces (HMIs) providing journey-related and other information with some interactivity. These should be designed with potential users as part of a co-design process to maximize acceptance, engagement, and trust. This paper presents an emerging framework to inform the design of in-vehicle CAV HMIs with a focus on older adults (70-years+). These could be amongst early adopters of CAVs and tend to have the highest level of cognitive, sensory, and physical impairments. Whilst there are numerous principles on HMI design for older adults there are fewer on HMIs for AVs, and a need for research on CAV HMI design principles for older adults. Our emerging framework is novel and important for designers of CAV HMIs for older adults and other potential users.


Connected autonomous vehicle Human machine interface Older adults Design 



The reported research forms part of an Innovate UK research project - FLOURISH: Empowerment through Trusted Secure Mobility (2016–2019). See We thank Tracey Poole (Atkins UK) for reading an earlier draft of this paper.


  1. 1.
    SAE International.: U.S. Department of transportation’s new policy on automated vehicles adopts SAE International’s levels of automation for defining driving automation in on-road motor vehicles, (2016)
  2. 2.
    Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer Interaction. Addison-Wesley, New York (1987)Google Scholar
  3. 3.
    Nielsen, J.: Usability Engineering. Elsevier, Amsterdam (1994)zbMATHGoogle Scholar
  4. 4.
    Wickens, C.D., Lee, J., Liu, Y., Becker, S.G.: An Introduction to Human Factors Engineering. Pearson, Hoboken, NJ (2004)Google Scholar
  5. 5.
    Gould, J.D., Lewis, C.: Designing for usability: key principles and what designers think. Commun. ACM 28(3), 300–311 (1985)CrossRefGoogle Scholar
  6. 6.
    Heckel, P.: The Elements of Friendly Software Design. Warner Books, Anaheim, CA (1984)Google Scholar
  7. 7.
    Mayhew, D.J.: Principles and Guidelines in Software User Interface Design. Prentice-Hall, London (1991)Google Scholar
  8. 8.
    Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human-Computer Interaction, 5th edn. Addison-Wesley Publishers, Boston (2010)Google Scholar
  9. 9.
    Walker, G., Stanton, N., Salmon, P.: Human Factors in Automotive Engineering and Design. Human Factors in Transport Series. Ashgate Publishing Ltd, Farnham (2015)Google Scholar
  10. 10.
    Weir, D.H.: Application of a driving simulator to the development of in-vehicle human–machine-interfaces. IATSS Res. 34(1), 16–21 (2010)CrossRefGoogle Scholar
  11. 11.
    Häuslschmid, R., Bengler, K., Olaverri-Monreal, C.: Graphic toolkit for adaptive layouts in in-vehicle user interfaces. In: Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp, 292–298 (2013)Google Scholar
  12. 12.
    Lorenz, L., Kerschbaum, P., Schumann, J.: Designing take over scenarios for automated driving: how does augmented reality support the driver to get back into the loop? In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 1681–1685. Sage Publications, Los Angeles (2014)Google Scholar
  13. 13.
    Cuevas, H.M.: An illustrative example of four HCI design approaches for evaluating an automated system interface. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 892–896. Sage Publications (2004)Google Scholar
  14. 14.
    Jämsä, J., Kaartinen, H.: Adaptive user interface for assisting the drivers’ decision making. In: 6th IEEE International Conference on Cognitive Info communications (CogInfoCom), pp. 17–18 (2015)Google Scholar
  15. 15.
    Baxter, G., Besnard, D., Riley, D.: Cognitive mismatches in the cockpit: will they ever be a thing of the past? Appl. Ergon. 38(4), 417–423 (2007)CrossRefGoogle Scholar
  16. 16.
    Seppelt, B.D., Lee, J.D.: Making adaptive cruise control (ACC) limits visible. Int. J. Hum. Comput. Stud. 65(3), 192–205 (2007)CrossRefGoogle Scholar
  17. 17.
    Stanton, N.A., Dunoyer, A., Leatherland, A.: Detection of new in-path targets by drivers using stop & go adaptive cruise control. Appl. Ergon. 42(4), 592–601 (2011)CrossRefGoogle Scholar
  18. 18.
    Deary, I.J., Corley, J., Gow, A.J., Harris, S.E., Houlihan, L.M., Marioni, R.E., Penke, L., Rafnsson, S.B., Starr, J.M.: Age-associated cognitive decline. Br. Med. Bull. 92(1), 135–152 (2009)CrossRefGoogle Scholar
  19. 19.
    Freedman, V.A., Martin, L.G., Schoeni, R.F.: Recent trends in disability and functioning among older adults in the united states: a systematic review. JAMA 288(24), 3137–3146 (2002)CrossRefGoogle Scholar
  20. 20.
    Charness, N., Boot, W.R.: Aging and information technology use potential and barriers. Curr. Dir. Psychol. Sci. 18(5), 253–258 (2009)CrossRefGoogle Scholar
  21. 21.
    Fisk, A.D., Rogers, W.A., Charness, N., Czaja, S.J., Sharit, J.: Designing for Older Adults: Principles and Creative Human Factors Approaches. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  22. 22.
    Czaja, S.J., Lee, C.C.: Information Technology and Older Adults. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  23. 23.
    Farage, M.A., Miller, K.W., Ajayi, F., Hutchins, D.: Design principles to accommodate older adults. Glob. J. Health Sci. 4(2), 2 (2012)Google Scholar
  24. 24.
    Baddeley, A.: Working memory: theories, models, and controversies. Annu. Rev. Psychol. 63, 1–29 (2012)CrossRefGoogle Scholar
  25. 25.
    Mulvenna, M., Carswell, W., McCullagh, P., Augusto, J.C., Zheng, H., Jeffers, P., Wang, H., Martin, S.: Visualization of data for ambient assisted living services. IEEE Commun. Mag. 49(1), 110–117 (2011)CrossRefGoogle Scholar
  26. 26.
    Glisky, E.L.: Changes in cognitive function in human aging. In: Riddle, D.R. (ed.) Brain Aging: Models, Methods, and Mechanisms, pp. 3–20. CRC Press, Boca Raton (2007)CrossRefGoogle Scholar
  27. 27.
    Spencer, W.D., Raz, N.: Differential effects of aging on memory for content and context: a meta-analysis. Psychol. Aging 10(4), 527 (1995)CrossRefGoogle Scholar
  28. 28.
    Baddeley, A., Eysenck, M.W., Anderson, M.C.: Memory, 2nd edn. Psychology Press, Sussex (2015)Google Scholar
  29. 29.
    Dickinson, A., Arnott, J., Prior, S.: Methods for human–computer interaction research with older people. Behav. Inf. Technol. 26(4), 343–352 (2007)CrossRefGoogle Scholar
  30. 30.
    Lee, H.K., Scudds, R.J.: Comparison of balance in older people with and without visual impairment. Age Ageing 32(6), 643–649 (2003)CrossRefGoogle Scholar
  31. 31.
    West, S.K., Munoz, B., Rubin, G.S., Schein, O.D., Bandeen-Roche, K., Zeger, S., German, S., Fried, L.P.: Function and visual impairment in a population-based study of older adults. The SEE project. Invest. Ophthalmol. Vis. Sci. 38(1), 72–82 (1997)Google Scholar
  32. 32.
    Echt, K. V., Morrell, R.: Designing web-based health information for older adults: visual considerations and design directives. In: Older adults, health information, and the World Wide Web. pp. 61–87 (2002)Google Scholar
  33. 33.
    Morrell, R. W., Echt, K. V.: Designing written instructions for older adults: learning to use computers. In: Handbook of Human Factors and the Older Adult, pp. 335–361 (1997)Google Scholar
  34. 34.
    Rubin, G.S., Roche, K.B., Prasada-Rao, P., Fried, L.P.: Visual impairment and disability in older adults. Optom. Vis. Sci. 71(12), 750–760 (1994)CrossRefGoogle Scholar
  35. 35.
    Watson, D.G., Maylor, E.A.: Aging and visual marking: selective deficits for moving stimuli. Psychol. Aging 17(2), 321 (2002)CrossRefGoogle Scholar
  36. 36.
    Gordon-Salant, S.: Hearing loss and aging: New research findings and clinical implications. J. Rehabil. Res. Dev. 42(4), 9 (2005)CrossRefGoogle Scholar
  37. 37.
    Pak, R., McLaughlin, A.: Designing Displays for Older Adults. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  38. 38.
    Strawbridge, W.J., Wallhagen, M.I., Shema, S.J., Kaplan, G.A.: Negative consequences of hearing impairment in old age a longitudinal analysis. Gerontologist 40(3), 320–326 (2000)CrossRefGoogle Scholar
  39. 39.
    Zajicek, M., Morrissey, W.: Speech output for older visually impaired adults. In: People and Computers XV—Interaction Without Frontiers, pp. 503–513. Springer, London (2001)CrossRefGoogle Scholar
  40. 40.
    Aslan, U.B., Cavlak, U., Yagci, N., Akdag, B.: Balance performance, aging and falling: A comparative study based on a Turkish sample. Arch. Gerontol. Geriatr. 46(3), 283–292 (2008)CrossRefGoogle Scholar
  41. 41.
    Darejeh, A., Singh, D.: A review on user interface design principles to increase software usability for users with less computer literacy. J. Comput. Sci. 9(11), 1443 (2013)CrossRefGoogle Scholar
  42. 42.
    Dieudonné, V., Mahieu, P., Machgeels, C.: INPH, a navigation interface for motor-disabled persons. In: Proceedings of the 15th Conference on l’Interaction Homme-Machine, pp. 202–205 (2003)Google Scholar
  43. 43.
    Page, T.: Touchscreen mobile devices and older adults: a usability study. Int. J. Hum. Factors Ergon. 3(1), 65–85 (2014)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Fink, J., Kobsa, A., Nill, A.: Adaptable and adaptive information provision for all users, including disabled and elderly people. New Rev. Hypermedia Multimed. 4(1), 163–188 (1998)CrossRefGoogle Scholar
  45. 45.
    Eisses, S.: ITS Action Plan. RappTrans. European commission D4 Final Report (2011)Google Scholar
  46. 46.
    Emmerson, C., Guo, W., Blythe, P., Namdeo, A., Edwards, S.: Fork in the road: in-vehicle navigation systems and older drivers. Transp. Res. Part F 21, 173–180 (2013)CrossRefGoogle Scholar
  47. 47.
    May, A., Ross, T., Osman, Z.: The design of next generation in-vehicle navigation systems for the older driver. Interact. Comput. 17(6), 643–659 (2005)CrossRefGoogle Scholar
  48. 48.
    Pauzie, A.: Development of ergonomic mock-ups for usability testing of in-vehicle communicating systems. Hum.-Comput. Interact. 2, 228 (2003)Google Scholar
  49. 49.
    Arnaout, G.M., Bowling, S.: A progressive deployment strategy for cooperative adaptive cruise control to improve traffic dynamics. Int. J. Autom. Comput. 11(1), 10–18 (2014)CrossRefGoogle Scholar
  50. 50.
    Bekiaris, E., Panou, M., Touliou, K.: HMI for elderly and disabled drivers to get safely real-time warnings and information while driving. In: The 13th World Conference on Transport Research (2013)Google Scholar
  51. 51.
    Iulian, D.A., Leonte, M.G.: Driver warning assistant for monitoring heart rate and SpO2 using mobile phones. Appl. Mech. Mater. 656, 395–402 (2014)CrossRefGoogle Scholar
  52. 52.
    McMellon, C.A., Schiffman, L.G.: Cybersenior empowerment: how some older individuals are taking control of their lives. J. Appl. Gerontol. 21(2), 157–175 (2002)CrossRefGoogle Scholar
  53. 53.
    Reimer, B.: Driver assistance systems and the transition to automated vehicles: a path to increase older adult safety and mobility? Public Policy Aging Rep. 24(1), 27–31 (2014)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Alvarez-Cortes, V., Zayas-Perez, B. E., Zarate-Silva, V. H., Uresti, J. A. R.: Current trends in adaptive user interfaces: challenges and applications. In: Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 312–317 (2007)Google Scholar
  55. 55.
    Gonzalez-Rodriguez, M., Manrubia, J., Vidau, A., Gonzalez-Gallego, M.: Improving accessibility with user-tailored interfaces. Appl. Intell. 30(1), 65–71 (2009)CrossRefGoogle Scholar
  56. 56.
    Kurschl, W., Augstein, M., Burger, T., Pointner, C.: User modeling for people with special needs. Int. J. Pervasive Comput. Commun. 10(3), 313–336 (2014)CrossRefGoogle Scholar
  57. 57.
    Lavie, T., Meyer, J.: Benefits and costs of adaptive user interfaces. Int. J. Hum Comput Stud. 68(8), 508–524 (2010)CrossRefGoogle Scholar
  58. 58.
    Chung, M.K., Lee, D., Jeong, C.: The effects of zoomable user interfaces and user age in searching for a target with a mouse on a two-dimensional information space. Int. J. Ind. Ergon. 41(2), 191–199 (2011)CrossRefGoogle Scholar
  59. 59.
    Ferreira, F., Almeida, N., Rosa, A.F., Oliveira, A., Casimiro, J., Silva, S., Teixeira, A.: Elderly centered design for interaction–the case of the S4S medication assistant. Proced. Comput. Sci. 27, 398–408 (2014)CrossRefGoogle Scholar
  60. 60.
    Hanson, V. L.: The user experience: designs and adaptations. In: Proceedings of the 2004 International Cross-Disciplinary Workshop on Web Accessibility (W4A), pp. 1–11. ACM 7 (2004)Google Scholar
  61. 61.
    Mejía, A., Juárez-Ramírez, R., Inzunza, S., Valenzuela, R.: Implementing adaptive interfaces: a user model for the development of usability in interactive systems. In: Proceedings of the CUBE International Information Technology Conference, pp. 598–604 (2012)Google Scholar
  62. 62.
    Rice, M., Alm, N.: Designing new interfaces for digital interactive television usable by older adults. Comput. Entertain. (CIE). 6(1), 6 (2008)Google Scholar
  63. 63.
    Verwey, W.B.: On-line driver workload estimation: Effects of road situation and age on secondary task measures. Ergonomics 43(2), 187–209 (2000)CrossRefGoogle Scholar
  64. 64.
    Browne, D., Norman, M., Riches, D.: Why build adaptive systems? In: Brown, D., Totterdell, P., Norman, M. (eds.) Adaptive User Interfaces, pp. 15–58. Elsevier, London (2016)Google Scholar
  65. 65.
    Heimgärtner, R.: Cultural differences in human computer interaction: results from two online surveys. In: ISI, pp. 145–157 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Phillip L. Morgan
    • 1
    • 2
  • Alexandra Voinescu
    • 1
    • 2
  • Craig Williams
    • 1
    • 3
  • Praminda Caleb-Solly
    • 1
    • 4
  • Chris Alford
    • 1
    • 2
  • Ian Shergold
    • 1
    • 5
  • Graham Parkhurst
    • 1
    • 5
  • Anthony Pipe
    • 1
    • 4
  1. 1.University of the West of England – BristolBristolUK
  2. 2.Psychological Sciences Research GroupUniversity of the West of England – BristolBristolUK
  3. 3.Centre for Health and Clinical ResearchUniversity of the West of England – BristolBristolUK
  4. 4.Bristol Robotics LaboratoryUniversity of the West of England – BristolBristolUK
  5. 5.Centre for Transport and SocietyUniversity of the West of England – BristolBristolUK

Personalised recommendations