Advertisement

Concept-Enhanced Multi-view Co-clustering of Document Data

  • Valentina RhoEmail author
  • Ruggero G. Pensa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10352)

Abstract

The maturity of structured knowledge bases and semantic resources has contributed to the enhancement of document clustering algorithms, that may take advantage of conceptual representations as an alternative for classic bag-of-words models. However, operating in the semantic space is not always the best choice in those domain where the choice of terms also matters. Moreover, users are usually required to provide a valid number of clusters as input, but this parameter is often hard to guess, due to the exploratory nature of the clustering process. To address these limitations, we propose a multi-view co-clustering approach that processes simultaneously the classic document-term matrix and an enhanced document-concept representation of the same collection of documents. Our algorithm has multiple key-features: it finds an arbitrary number of clusters and provides clusters of terms and concepts as easy-to-interpret summaries. We show the effectiveness of our approach in an extensive experimental study involving several corpora with different levels of complexity.

Keywords

Co-clustering Semantic enrichment Multi-view clustering 

Notes

Acknowledgments

The work is supported by Compagnia di San Paolo foundation (grant number Torino_call2014_L2_157).

References

  1. 1.
    Aggarwal, C.C., Zhai, C.: A survey of text clustering algorithms. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 77–128. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Boutsidis, C., Gallopoulos, E.: SVD based initialization: a head start for nonnegative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. 92–A(3), 708–721 (2009)CrossRefGoogle Scholar
  4. 4.
    Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proceedings of ACM SIGKDD 2003, pp. 89–98. ACM (2003)Google Scholar
  5. 5.
    Gabrilovich, E., Markovitch, S.: Feature generation for text categorization using world knowledge. In: Proceedings of IJCAI 2005, pp. 1048–1053 (2005)Google Scholar
  6. 6.
    Goodman, L.A., Kruskal, W.H.: Measures of association for cross classification. J. Am. Stat. Assoc. 49, 732–764 (1954)zbMATHGoogle Scholar
  7. 7.
    He, X., Kan, M., Xie, P., Chen, X.: Comment-based multi-view clustering of web 2.0 items. In: Proceedings of WWW 2014, pp. 771–782 (2014)Google Scholar
  8. 8.
    Hu, J., Fang, L., Cao, Y., Zeng, H., Li, H., Yang, Q., Chen, Z.: Enhancing text clustering by leveraging wikipedia semantics. In: Proceedings of SIGIR 2008, pp. 179–186. ACM (2008)Google Scholar
  9. 9.
    Huang, A., Milne, D., Frank, E., Witten, I.H.: Clustering documents using a wikipedia-based concept representation. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 628–636. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01307-2_62 CrossRefGoogle Scholar
  10. 10.
    Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ienco, D., Robardet, C., Pensa, R.G., Meo, R.: Parameter-less co-clustering for star-structured heterogeneous data. Data Min. Knowl. Discov. 26(2), 217–254 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kalmanovich, I.G., Kurland, O.: Cluster-based query expansion. In: Proceedings of ACM SIGIR 2009, pp. 646–647. ACM (2009)Google Scholar
  13. 13.
    Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25(2–3), 259–284 (1998)CrossRefGoogle Scholar
  14. 14.
    Lin, C.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–136 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambiguation: a unified approach. Trans. ACL 2, 231–244 (2014)Google Scholar
  17. 17.
    Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Percha, B., Altman, R.B.: Learning the structure of biomedical relationships from unstructured text. PLoS Comput. Biol. 11(7), e1004216 (2015)CrossRefGoogle Scholar
  19. 19.
    Recupero, D.R.: A new unsupervised method for document clustering by using wordnet lexical and conceptual relations. Inf. Retr. J. 10(6), 563–579 (2007)CrossRefGoogle Scholar
  20. 20.
    Shen, C., Li, T., Ding, C.H.Q.: Integrating clustering and multi-document summarization by bi-mixture probabilistic latent semantic analysis (PLSA) with sentence bases. In: Proceedings of AAAI 2011, pp. 914–920. AAAI Press (2011)Google Scholar
  21. 21.
    Wei, T., Lu, Y., Chang, H., Zhou, Q., Bao, X.: A semantic approach for text clustering using wordnet and lexical chains. Expert Syst. Appl. 42(4), 2264–2275 (2015)CrossRefGoogle Scholar
  22. 22.
    West, J.D., Wesley-Smith, I., Bergstrom, C.T.: A recommendation system based on hierarchical clustering of an article-level citation network. IEEE Trans. Big Data 2(2), 113–123 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TorinoTurinItaly

Personalised recommendations