Abductive Reasoning on Compliance Monitoring

Balancing Flexibility and Regulation
  • Federico ChesaniEmail author
  • Paola MelloEmail author
  • Marco Montali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10352)


Many emerging applications in Business Process Management, Clinical Guidelines, Service-Oriented and Multi-Agent Systems, are characterized by distribution, complex interaction and coordination dynamics. Such domains, apparently unrelated, all ask for a suitable tradeoff between flexibility and regulation. In this light, compliance checking emerged as an effective way to understand whether an observed course of interaction agrees with what is expected by a model of the system. In this paper, we single out a non exhaustive list of desiderata and challenges for compliance checking applied at runtime. We then argue that methods, tools and techniques of Computational Logic, and Abductive Reasoning in particular, can be fruitfully exploited to tackle all such challenges in a formally grounded, computationally effective way.


Compliance monitoring Abductive logic programming Business Process Management Multi-agent Systems 


  1. 1.
    van der Aalst, W.M.P.: Distributed process discovery and conformance checking. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 1–25. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28872-2_1 CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28108-2_19 CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow language. Inf. Syst. 30(4), 245–275 (2005)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  5. 5.
    Alberti, M., Chesani, F., Daolio, D., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and verification of agent interaction protocols in a logic-based system. Scalable Comput.: Pract. Exp. 8(1), 1–13 (2007)Google Scholar
  6. 6.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM Trans. Comput. Log. 9(4), 29:1–29:43 (2008)CrossRefGoogle Scholar
  7. 7.
    Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defeasible logic. ACM Trans. Comput. Log. 2(2), 255–287 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Artikis, A., Sergot, M.J., Paliouras, G.: An event calculus for event recognition. IEEE Trans. Knowl. Data Eng. 27(4), 895–908 (2015)CrossRefGoogle Scholar
  9. 9.
    Bauer, B., Cossentino, M., Cranefield, S., Huget, M.P., Kearney, K., Levy, R., Nodine, M., Odell, J., Cervenka, R., Turci, P., Zhu, H.: The FIPA Agent UML.
  10. 10.
    Boella, G., Janssen, M., Hulstijn, J., Humphreys, L., van der Torre, L.W.N.: Managing legal interpretation in regulatory compliance. In: ICAIL 2013, pp. 23–32. ACM (2013)Google Scholar
  11. 11.
    Bottrighi, A., Chesani, F., Mello, P., Montali, M., Montani, S., Terenziani, P.: Conformance checking of executed clinical guidelines in presence of basic medical knowledge. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 100, pp. 200–211. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28115-0_20 CrossRefGoogle Scholar
  12. 12.
    Bragaglia, S., Chesani, F., Mello, P., Montali, M.: Conformance verification of clinical guidelines in presence of computerized and human-enhanced processes. In: Hommersom, A., Lucas, P.J.F. (eds.) Foundations of Biomedical Knowledge Representation. LNCS, vol. 9521, pp. 81–106. Springer, Cham (2015). doi: 10.1007/978-3-319-28007-3_6 CrossRefGoogle Scholar
  13. 13.
    Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of JADE and Jason multiagent systems with prolog. In: CILC 2014, CEUR, vol. 1195, pp. 319–323 (2014)Google Scholar
  14. 14.
    Chesani, F., De Masellis, R., Di Francescomarino, C., Ghidini, C., Mello, P., Montali, M., Tessaris, S.: Abducing compliance of incomplete event logs. In: Adorni, G., Cagnoni, S., Gori, M., Maratea, M. (eds.) AI*IA 2016. LNCS, vol. 10037, pp. 208–222. Springer, Cham (2016). doi: 10.1007/978-3-319-49130-1_16 CrossRefGoogle Scholar
  15. 15.
    Chesani, F., De Masellis, R., Francescomarino, C.D., Ghidini, C., Mello, P., Montali, M., Tessaris, S.: Abducing workflow traces: a general framework to manage incompleteness in business processes. In: ECAI 2016. Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 1734–1735. IOS Press (2016)Google Scholar
  16. 16.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: Jensen, K., Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00899-3_16 CrossRefGoogle Scholar
  17. 17.
    Chesani, F., Mello, P., Montali, M., Storari, S.: Testing careflow process execution conformance by translating a graphical language to computational logic. In: Bellazzi, R., Abu-Hanna, A., Hunter, J. (eds.) AIME 2007. LNCS, vol. 4594, pp. 479–488. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73599-1_64 CrossRefGoogle Scholar
  18. 18.
    Chesani, F., Mello, P., Montali, M., Torroni, P.: A logic-based, reactive calculus of events. Fundam. Inform. 105(1–2), 135–161 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Chesani, F., Mello, P., Montali, M., Torroni, P.: Representing and monitoring social commitments using the event calculus. Auton. Agents Multi-Agent Syst. 27(1), 85–130 (2013)CrossRefGoogle Scholar
  20. 20.
    Chopra, A.K.: Requirements-driven adaptation: compliance, context, uncertainty, and systems. In: RE@RunTime 2011, pp. 32–36. IEEE (2011)Google Scholar
  21. 21.
    Combi, C., Posenato, R.: Towards temporal controllabilities for workflow schemata. In: TIME 2010, pp. 129–136. IEEE (2010)Google Scholar
  22. 22.
    Denecker, M., Kakas, A.: Abduction in logic programming. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS, vol. 2407, pp. 402–436. Springer, Heidelberg (2002). doi: 10.1007/3-540-45628-7_16 CrossRefGoogle Scholar
  23. 23.
    Dumas, M., García-Bañuelos, L.: Process mining reloaded: event structures as a unified representation of process models and event logs. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 33–48. Springer, Cham (2015). doi: 10.1007/978-3-319-19488-2_2 CrossRefGoogle Scholar
  24. 24.
    Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to reality. Inf. Syst. 47, 220–243 (2015)CrossRefGoogle Scholar
  25. 25.
    Francescomarino, C., Ghidini, C., Tessaris, S., Sandoval, I.V.: Completing workflow traces using action languages. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 314–330. Springer, Cham (2015). doi: 10.1007/978-3-319-19069-3_20 CrossRefGoogle Scholar
  26. 26.
    Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic programming. J. Log. Program. 33(2), 151–165 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Giordano, L., Martelli, A., Spiotta, M., Dupré, D.T.: Business process verification with constraint temporal answer set programming. TPLP 13(4–5), 641–655 (2013)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Governatori, G., Hashmi, M., Lam, H.-P., Villata, S., Palmirani, M.: Semantic business process regulatory compliance checking using LegalRuleML. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS, vol. 10024, pp. 746–761. Springer, Cham (2016). doi: 10.1007/978-3-319-49004-5_48 CrossRefGoogle Scholar
  29. 29.
    Governatori, G., Rotolo, A.: Norm compliance in business process modeling. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 194–209. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16289-3_17 CrossRefGoogle Scholar
  30. 30.
    Greco, S., Trubitsyna, I., Zumpano, E.: On the semantics of logic programs with preferences. J. Artif. Intell. Res. (JAIR) 30, 501–523 (2007)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Initiative, B.P.M.: Business process modeling notation.
  32. 32.
    Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Comput. 2(6), 719–770 (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kakas, A.C., Mancarella, P.: Abduction and abductive logic programming. In: Logic Programming, Proceedings of ICPL, pp. 18–19 (1994)Google Scholar
  34. 34.
    Kakas, A.C., Michael, A., Mourlas, C.: ACLP: abductive constraint logic programming. J. Log. Program. 44(1–3), 129–177 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kowalski, R.A.: Algorithm = logic + control. Commun. ACM 22(7), 424–436 (1979)CrossRefzbMATHGoogle Scholar
  36. 36.
    Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Gener. Comput. 4(1), 67–95 (1986)CrossRefzbMATHGoogle Scholar
  37. 37.
    de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An alignment-based framework to check the conformance of declarative process models and to preprocess event-log data. Inf. Syst. 47, 258–277 (2015)CrossRefGoogle Scholar
  38. 38.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  39. 39.
    Loreti, D., Chesani, F., Ciampolini, A., Mello, P.: Distributed compliance monitoring of business processes over mapreduce architectures. In: ICPE 2017, to appearGoogle Scholar
  40. 40.
    Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise Systems. Addison-Wesley, Boston (2001)Google Scholar
  41. 41.
    Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Göser, K., Pfeifer, H., Reichert, M., Dadam, P.: SeaFlows toolset – compliance verification made easy for process-aware information systems. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 76–91. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-17722-4_6 CrossRefGoogle Scholar
  42. 42.
    Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance monitoring in business processes: functionalities, application, and tool-support. Inf. Syst. 54, 209–234 (2015)CrossRefGoogle Scholar
  43. 43.
    Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process compliance with semantic constraints in process management systems - requirements, challenges, solutions. Inf. Syst. Front. 14(2), 195–219 (2012)CrossRefGoogle Scholar
  44. 44.
    Montali, M.: Specification and Verification of Declarative Open Interaction Models - A Logic-Based Approach. LNBIP, vol. 56. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14538-4 CrossRefzbMATHGoogle Scholar
  45. 45.
    Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints in declare. In: Proceedings of SAC 2013. ACM (2013)Google Scholar
  46. 46.
    Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitoring business constraints with the event calculus. ACM TIST 5(1), 17:1–17:30 (2013)Google Scholar
  47. 47.
    Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative specification and verification of service choreographies. TWEB 4(1), 3:1–3:62 (2010)CrossRefGoogle Scholar
  48. 48.
    Munoz-Gama, J.: Conformance Checking and Diagnosis in Process Mining - Comparing Observed and Modeled Processes. LNBIP, vol. 270. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-49451-7 CrossRefGoogle Scholar
  49. 49.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006). doi: 10.1007/11837862_18 CrossRefGoogle Scholar
  50. 50.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  51. 51.
    Singh, M.P.: Agent communication languages: rethinking the principles. In: Huget, M.-P. (ed.) Communication in Multiagent Systems. LNCS, vol. 2650, pp. 37–50. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-44972-0_2 CrossRefGoogle Scholar
  52. 52.
    Singh, M.P., Chopra, A.K., Desai, N.: Commitment-based service-oriented architecture. IEEE Comput. 42(11), 72–79 (2009)CrossRefGoogle Scholar
  53. 53.
    Smith, F., Proietti, M.: Rule-based behavioral reasoning on semantic business processes. In: ICAART 2013. SciTePress (2013)Google Scholar
  54. 54.
    Terenziani, P., Raviola, P., Bruschi, O., Torchio, M., Marzuoli, M., Molino, G.: Representing knowledge levels in clinical guidelines. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J. (eds.) AIMDM 1999. LNCS, vol. 1620, pp. 254–258. Springer, Heidelberg (1999). doi: 10.1007/3-540-48720-4_28 CrossRefGoogle Scholar
  55. 55.
    Yolum, P., Singh, M.P.: Commitment machines. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS, vol. 2333, pp. 235–247. Springer, Heidelberg (2002). doi: 10.1007/3-540-45448-9_17 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of BolognaBolognaItaly
  2. 2.Free University of Bozen–BolzanoBolzanoItaly

Personalised recommendations