Advertisement

A New Strategy for Analysis and Visualization of Massively Parallel Computations of Turbulent and Transitional Flows

  • A. Cadiou
  • M. Buffat
  • B. Di Pierro
  • L. Le Penven
  • C. Pera
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 135)

Abstract

Massively parallel simulations generate increasing volumes of large data, whose exploitation requires large storage resources, efficient network and increasingly large post-processing facilities. In the coming era of exascale computations, there is an emerging need for new data analysis and visualization strategies. In order to meet these challenges, an original solution based on Python and open-source libraries has been developed. It is shown to make it possible to embed analysis and visualization into the code and efficiently shorten the exploitation of massively parallel computations. Applications are given for direct numerical simulations of turbulent and transitional flows.

Notes

Acknowledgements

The authors thank the computer center P2CHPD at “Université Claude Bernard Lyon 1”, member of the “Fédération Lyonnaise de Modélisation et Sciences Numériques” (FLMSN), for providing computer facilities.

References

  1. 1.
    Buffat M, Cadiou A, Le Penven L (2014) Bypass transition at the entrance of a plane channel. In: EFMC10 conference, Copenhague, Danemark, 14–18 Sept 2014Google Scholar
  2. 2.
    Buffat M, Cadiou A, Le Penven L, Pera Ch. (2015) In-situ analysis and visualization of massively parallel computations. Int J High Perf Comput Appl 1–15Google Scholar
  3. 3.
    Buffat M, Le Penven L, Cadiou A (2011) An efficient spectral method based on an orthogonal decomposition of the velocity for transition analysis in wall bounded flow. Comput Fluids 42:62–72MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Buffat M, Le Penven L, Cadiou A, Montagnier J (2013) DNS of bypass transition in entrance channel flow induced by boundary layer interaction. Eur J Mech B Fluids 43:1–13Google Scholar
  5. 5.
    Cadiou A, Buffat M, Le Penven L (2013) Visualisation in-situ pour l’étude de la transition sous-critique. HPC Mag 7:68–69Google Scholar
  6. 6.
    Cadiou A, Buffat M, Le Penven L, Montagnier J (2014) DNS of turbulent by-pass transition at the entrance of a plane channel. In: Progress in Turbulence V, vol 149. Springer Proceedings in Physics, pp. 59–64Google Scholar
  7. 7.
    Capuano M, Cadiou A, Buffat M, Le Penven L (2014) DNS of the turbulent flow evolving in a plane channel from the entry to the fully developed state. In: iTi conference on turbulence, Bertinoro, Italy, 21–24 Sept 2014Google Scholar
  8. 8.
    Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–74MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Montagnier J, Cadiou A, Buffat M, Le Penven L (2013) Towards petascale simulation for transition analysis in wall bounded flow. Int J Num Meth Fluids 72(7):709–723Google Scholar
  10. 10.
    Moser R, Kim J, Mansour N (1999) Direct numerical simulation of turbulent channel flow up to \({R}e_{\tau }=590\). Phys Fluids 11(4):943–945CrossRefMATHGoogle Scholar
  11. 11.
    Orszag SA (1969) Numerical methods for the simulation of turbulence. Phys Fluids 12(12)Google Scholar
  12. 12.
    Orszag SA, Patterson GS (1972) Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys Rev Lett 28:76–79CrossRefGoogle Scholar
  13. 13.
    Requena S (2013) Big data et HPC. In: Conférence Big Data, ParisGoogle Scholar
  14. 14.
    Spalart PR, Leonard A (1985) Direct numerical simulation of equilibrium turbulent boundary layer. In: 5th Symposium on turbulent shear flowsGoogle Scholar
  15. 15.
  16. 16.
    Wu X, Moin P (2010) Transitional and turbulent boundary layer with heat transfer. Phys Fluids 22(8)Google Scholar
  17. 17.
    Yokokawa M, Itakura K, Uno A, Ishihara T, Kaneda Y (2002) 16.4-Tflops direct numerical simulation of turbulence by a Fourier spectral method on the earth simulator. In: Supercomputing, ACM/IEEE 2002 conferenceGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • A. Cadiou
    • 1
  • M. Buffat
    • 1
  • B. Di Pierro
    • 1
  • L. Le Penven
    • 1
  • C. Pera
    • 1
  1. 1.Laboratoire de Mécanique des Fluides et d’AcoustiqueUniversité Claude-Bernard Lyon 1/ CNRS/ École centrale de Lyon/ INSA de LyonVilleurbanneFrance

Personalised recommendations