Measurement of Organizational Happiness

  • Eyal EckhausEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 594)


Personal well-being studies have reported a strong positive relationship between happiness and productivity, determining the need of the Human Resource (HR) function to regularly monitor and maintain employee happiness and satisfaction. However, lack of scientific precision in defining the term ‘happiness’ and inconsistency in its measurement have made this research area more challenging. The study proposes an automated detection technique that uses Natural Language Processing (NLP), to offer the HR function an easy means of implementing a technique that enables constant monitoring of happiness levels, and leverages the data into a tool for evaluating the effectiveness of programs, policies, and practices. A case study is presented to demonstrate the framework’s effectiveness.


Happiness HR metrics Email sentiments Natural Language Processing 


  1. 1.
    Wren-Lewis, S.: How successfully can we measure well-being through measuring happiness? S Afr. J. Philos. 33(4), 417–432 (2014)CrossRefGoogle Scholar
  2. 2.
    Zelenski, J.M., Murphy, S.A., Jenkins, D.A.: The happy-productive worker thesis revisited. J. Happiness Stud. 9(4), 521–537 (2008)CrossRefGoogle Scholar
  3. 3.
    Atkinson, C., Hall, L.: Flexible working and happiness in the NHS. Empl. Relat. 33(2), 88–105 (2011)CrossRefGoogle Scholar
  4. 4.
    Robertson, I., Cooper, C.: Well-Being: Productivity and Happiness at Work. Palgrave Macmillan, London (2011)CrossRefGoogle Scholar
  5. 5.
    Sisley, R.: Autonomous motivation and well-being: an alternative approach to workplace stress management. NZ J. Employ. Relat. (Online) 35(2), 28–40 (2010)Google Scholar
  6. 6.
    Patterson, M., Warr, P., West, M.: Organizational climate and company productivity: the role of employee affect and employee level. J. Occup. Organ. Psychol. 77, 193–216 (2004)CrossRefGoogle Scholar
  7. 7.
    Lau, R.S.M.: Quality of work life and performance - an ad hoc investigation of two key elements in the service profit chain model. Int. J. Serv. Ind. Manag. 11(5), 422–437 (2000)CrossRefGoogle Scholar
  8. 8.
    Patnaik, M., Kar, A.K.: Employee satisfaction and HR practices in the private technical institutions of Odisha: an empirical study in Bhubaneswar. Int. J. Organ. Behav. Manag. Perspect. 3(2), 918–923 (2014)Google Scholar
  9. 9.
    Hall, L., Atkinson, C.: Improving working lives: flexible working and the role of employee control. Empl. Relat. 28(4), 374–386 (2006)CrossRefGoogle Scholar
  10. 10.
    Devonish, D.: Workplace bullying, employee performance and behaviors. Empl. Relat. 35(6), 630–647 (2013)CrossRefGoogle Scholar
  11. 11.
    Nilakant, V., et al.: Leading in a post-disaster setting: guidance for human resource practitioners. NZ J. Employ. Relat. (Online) 38(1), 1–13 (2013)Google Scholar
  12. 12.
    Donald, D.U.: Talent management and human resource practices. Int. J. Innov. Appl. Stud. 6(4), 1011–1018 (2014)Google Scholar
  13. 13.
    Boyd, N., Gessner, B.: Human resource performance metrics: methods and processes that demonstrate you care. Cross Cult. Manag. 20(2), 251–273 (2013)CrossRefGoogle Scholar
  14. 14.
    Okpara, J.O., Wynn, P.: Human resource management practices in a transition economy. Manag. Res. News 31(1), 57–76 (2008)CrossRefGoogle Scholar
  15. 15.
    Fitsum, G., Luchien, K.: Human resource management practices in Eritrea: challenges and prospects. Empl. Relat. 28(1/2), 144–163 (2006)Google Scholar
  16. 16.
    Geroy, G.D., Wright, P.C., Jacoby, L.: Toward a conceptual framework of employee volunteerism: an aid for the human resource manager. Manag. Decis. 38(4), 280–286 (2000)CrossRefGoogle Scholar
  17. 17.
    Aamodt, M.G.: The role of the I/O psychologist in police psychology. J. Police Crim. Psychol. 15(2), 8–10 (2000)CrossRefGoogle Scholar
  18. 18.
    Khan, R., et al.: Hot zone identification: analyzing effects of data sampling on spam clustering. J. Digit. Forensics Secur. Law: JDFSL 9(1), 67–82 (2014)Google Scholar
  19. 19.
    Potkay, A.: Narrative possibilities of happiness, unhappiness, and joy. Soc. Res. 77(2), 523–0_3 (2010)Google Scholar
  20. 20.
    Ryff, C.D., Keyes, C.L.M.: The structure of psychological well-being revisited. J. Pers. Soc. Psychol. 69(4), 719 (1995)CrossRefGoogle Scholar
  21. 21.
    Springer, K.W., Hauser, R.M.: An assessment of the construct validity of Ryff’s scales of psychological well-being: method, mode, and measurement effects. Soc. Sci. Res. 35(4), 1080–1102 (2006)CrossRefGoogle Scholar
  22. 22.
    Hills, P., Argyle, M.: The Oxford happiness questionnaire: a compact scale for the measurement of psychological well-being. Pers. Individ. Differ. 33, 1073–1082 (2002)CrossRefGoogle Scholar
  23. 23.
    Diener, E., et al.: The satisfaction with life scale. J. Pers. Assess. 49(1), 71–75 (1985)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Diener, E.: Guidelines for national indicators of subjective well-being and ill-being. J. Happiness Stud. 7(4), 397–404 (2006)CrossRefGoogle Scholar
  25. 25.
    Peterson, C., Park, N., Seligman, M.E.: Orientations to happiness and life satisfaction: the full life versus the empty life. J. Happiness Stud. 6(1), 25–41 (2005)CrossRefGoogle Scholar
  26. 26.
    Singh, K., Jha, S.D.: Positive and negative affect, and grit as predictors of happiness and life satisfaction. J. Indian Acad. Appl. Psychol. 34, 40–45 (2008)Google Scholar
  27. 27.
    Brockmann, H., et al.: The China puzzle: falling happiness in a rising economy. J. Happiness Stud. 10(4), 387–405 (2009)CrossRefGoogle Scholar
  28. 28.
    Watson, D., Clark, L.A., Tellegen, A.: Development and validation of a brief measure of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54, 1063–1070 (1988)CrossRefGoogle Scholar
  29. 29.
    Lyubomirsky, S., Lepper, H.S.: A measure of subjective happiness: preliminary reliability and construct validation. Soc. Indic. Res. 46(2), 137–155 (1999)CrossRefGoogle Scholar
  30. 30.
    Lucas, R.E.: Adaptation and the set-point model of subjective well-being: does happiness change after major life events? Curr. Dir. Psychol. Sci. 16(2), 75–79 (2007)CrossRefGoogle Scholar
  31. 31.
    Patterson, G.T., Chung, I.W., Swan, P.W.: Stress management interventions for police officers and recruits: a meta-analysis. J. Exp. Criminol. 10(4), 487–513 (2014)CrossRefGoogle Scholar
  32. 32.
    Cohn, M.A., Mehl, M.R., Pennebaker, J.W.: Linguistic markers of psychological change surrounding september 11, 2001. Psychol. Sci. 15(10), 687–693 (2004). (Wiley-Blackwell)CrossRefGoogle Scholar
  33. 33.
    Stiles, W.B., Putnam, S.M.: Verbal exchanges in medical interviews: concepts and measurement. Soc. Sci. Med. 35(3), 347–355 (1992)CrossRefGoogle Scholar
  34. 34.
    Oxman, T.E., Rosenberg, S.D., Tucker, G.J.: The language of paranoia. Am. J. Psychiatry 139(3), 275–282 (1982)CrossRefGoogle Scholar
  35. 35.
    Oxman, T.E., et al.: Diagnostic classification through content analysis of patients’ speech. Am. J. Psychiatry 145(4), 464–468 (1988)CrossRefGoogle Scholar
  36. 36.
    Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Lang. Resources Eval. 39(2–3), 165–210 (2005)CrossRefGoogle Scholar
  37. 37.
    Haggag, M.H.: Frame semantics evolutionary model for emotion detection. Comput. Inf. Sci. 7(1), 136–161 (2014)Google Scholar
  38. 38.
    Rains, S.A., Young, A.M.: A sign of the times: an analysis of organizational members’ email signatures. J. Comput. Mediated Commun. 11, 1046–1061 (2006)CrossRefGoogle Scholar
  39. 39.
    Hagler, B.E., et al.: Measuring future worker productivity via business email message creation: implications for education. Delta Pi Epsilon J. 51(3), 152–165 (2009)Google Scholar
  40. 40.
    Lindsey, R., et al.: Be wary of what your computer reads: the effects of corpus selection on measuring semantic relatedness. In: 8th International Conference of Cognitive Modeling, ICCM 2007, Ann Arbor, MI (2007)Google Scholar
  41. 41.
    Wilson, G., Banzhaf, W.: Discovery of email communication networks from the Enron corpus with a genetic algorithm using social network analysis. In: Evolutionary Computation, CEC 2009. IEEE Congress (2009)Google Scholar
  42. 42.
    Garrett, J.L.: SOS: written English is in trouble. Kappa Delta Pi Record 45(1), 8–9 (2008)CrossRefGoogle Scholar
  43. 43.
    Acerbi, A., et al.: The expression of emotions in 20th century books. PLoS One 8(3), e59030 (2013)CrossRefGoogle Scholar
  44. 44.
    Mohammad, S.M., Yang, T.: Tracking sentiment in mail: how genders differ on emotional axes. In: Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (ACL-HLT), 01 Jan 2011 (2011)Google Scholar
  45. 45.
    Larsen, J.T., McGraw, A.P., Cacioppo, J.T.: Can people feel happy and sad at the same time? J. Pers. Soc. Psychol. 81(4), 684–696 (2001)CrossRefGoogle Scholar
  46. 46.
    Nanda, U.P., Pati, D.P., McCurry, K.: Neuroesthetics and healthcare design. HERD: Health Environ. Res. Des. J. 2(2), 116–133 (2009)Google Scholar
  47. 47.
    Chemali, Z.N., Chahine, L.M., Naassan, G.: On happiness: a minimalist perspective on a complex neural circuitry and its psychosocial constructs. J. Happiness Stud. 9(4), 489–501 (2008)CrossRefGoogle Scholar
  48. 48.
    Perez, E.A., D’Hombres, B., Mascherini, M.: Why are managers happier than workers? European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen. EUR 24477 EN (2010)Google Scholar
  49. 49.
    Wofford, T.D.: A Study of Worker Demographics and Workplace Job Satisfaction for Employees in a Global Engineering and Construction Organization, p. 188. Nova Southeastern University, Ann Arbor (2003)Google Scholar
  50. 50.
    Palus, S., Bródka, P., Kazienko, P.: Evaluation of organization structure based on email interactions. Int. J. Knowl. Soc. Res. 2(1), 1–13 (2011)CrossRefGoogle Scholar
  51. 51.
    Petra, S.T., Loukatos, G.: The Sarbanes-Oxley Act of 2002: a five-year retrospective. Corp. Gov. 9(2), 120–132 (2009)CrossRefGoogle Scholar
  52. 52.
    Norris, F.: Where did the value go at Enron? New York Times, 23 Oct 2001 (2001)Google Scholar
  53. 53.
    Thomas, C.W.: The rise and fall of Enron. J. Accountancy 193(4), 41 (2002)Google Scholar
  54. 54.
    Rezaee, Z.: The three Cs of fraudulent financial reporting. Internal Auditor 59(5), 56–61 (2002)Google Scholar
  55. 55.
    Sims, R.R., Brinkmann, J.: Enron ethics (or: culture matters more than codes). J. Bus. Ethics 45(3), 243–256 (2003)CrossRefGoogle Scholar
  56. 56.
    Magee, W.: Anxiety, demoralization, and the gender difference in job satisfaction. Sex Roles 69(5–6), 308–322 (2013)CrossRefGoogle Scholar
  57. 57.
    Sousa-Poza, A., Sousa-Poza, A.A.: Taking another look at the gender/job-satisfaction paradox. Kyklos 53(2), 135–152 (2000)CrossRefGoogle Scholar
  58. 58.
    Clark, A.E.: Job satisfaction and gender: why are women so happy at work? Labour Econ. 4(4), 341–372 (1997)CrossRefGoogle Scholar
  59. 59.
    Dodds, P.S., Danforth, C.M.: Measuring the happiness of large-scale written expression: songs, blogs, and presidents. J. Happiness Stud. 11(4), 441–456 (2010)CrossRefGoogle Scholar
  60. 60.
    Steffensmeier, D.J., Schwartz, J., Roche, M.: Gender and twenty-first-century corporate crime: female involvement and the gender gap in Enron-Era corporate frauds. Am. Sociol. Rev. 78(3), 448–476 (2013)CrossRefGoogle Scholar
  61. 61.
    Diesner, J., Frantz, T.L., Carley, K.M.: Text mining the Enron email corpus for stock price prediction, National College of Ireland. Comput. Math. Organ. Theory 11(3), 201–228 (2005)CrossRefzbMATHGoogle Scholar
  62. 62.
    Eckhaus, E.: Corporate transformational leadership’s effect on financial performance. J. Leadersh. Accountability Ethics 13(1), 90–102 (2016)Google Scholar
  63. 63.
    Ying, X., Wu, X.: On link privacy in randomizing social networks. Knowl. Inf. Syst. 28(3), 645–663 (2011)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Shetty, J., Adibi, J.: The Enron email dataset database schema and brief statistical report. Information Sciences Institute Technical Report, University of Southern California (2004)Google Scholar
  65. 65.
    Özcan, F., et al.: Integration of SQL and XQuery in IBM DB2. IBM Syst. J. 45(2), 245–270 (2006)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Creamer, G., et al.: Segmentation and automated social hierarchy detection through email network analysis. In: Haizheng, Z., et al. (eds.) Advances in Web Mining and Web Usage Analysis, pp. 40–58. Springer-Verlag (2009)Google Scholar
  67. 67.
    Razavi, A.H., et al.: Dream sentiment analysis using Second Order Soft Co-Occurrences (SOSCO) and time course representations. J. Intell. Inf. Syst. 42(3), 393–413 (2014)Google Scholar
  68. 68.
    Cheng, L.T.E., et al.: Discerning tumor status from unstructured MRI reports–completeness of information in existing reports and utility of automated natural language processing. J. Digit. Imaging 23(2), 119–132 (2010)CrossRefGoogle Scholar
  69. 69.
    Greasley, P., Sherrard, C., Waterman, M.: Emotion in language and speech: methodological issues in naturalistic approach. Lang. Speech 43, 355–375 (2000)CrossRefGoogle Scholar
  70. 70.
    Bort, J.: Google warns: we are scanning your email, in Business Insider, 15 April 2014 (2014).–4
  71. 71.
    Yu, C.H.: Are positive trait attributions for the deceased caused by fear of supernatural punishments?: A triangulated study by content analysis and text mining. J. Psychol. Christianity 34(1), 3–18 (2015)Google Scholar
  72. 72.
    Arroniz, I.: Extracting Quantitative Information from Nonnumeric Marketing Data: An Augmented Latent Semantic Analysis Approach, p. 143. University of Central Florida, Ann Arbor (2007)Google Scholar
  73. 73.
    Merkl-Davies, D.M., Brennan, N.M., Vourvachis, P.: Content analysis and discourse analysis in corporate narrative reporting research: a methodological guide. In: Centre for Impression management in Accounting Communication (CIMAC) Conference, 6th June 2014. Bangor Business School London Centre (2014)Google Scholar
  74. 74.
    Altinçay, H., Erenel, Z.: Ternary encoding based feature extraction for binary text classification. Appl. Intell. 41(1), 310–326 (2014)CrossRefGoogle Scholar
  75. 75.
    Li, C., Wu, H., Jin, Q.: Emotion classification of Chinese microblog text via fusion of bow and evector feature representations. In: Zong, C., et al. (eds.) Proceedings of Natural Language Processing and Chinese Computing: Third CCF Conference, NLPCC 2014, Shenzhen, China, 5–9 December 2014, pp. 217–228. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Ariel UniversityArielIsrael

Personalised recommendations