Skip to main content

Advanced Glycation End Products (AGEs) in Diabetic Complications

  • Chapter
  • First Online:
Mechanisms of Vascular Defects in Diabetes Mellitus

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 17))

Abstract

Hyperglycemic condition in diabetes accelerates formation of advanced glycation end products (AGEs) that are formed as a result of series of reaction between reducing sugars and proteins. Accumulation of AGEs has been implicated in development of insulin resistance as well as in the pathogenesis of diabetic complications. The principal mechanism by which AGEs render harmful effects is through interaction with cell bound receptors. Certain receptors like AGE-R1 are involved in degradation of AGEs, while certain other receptors like receptor for AGE (RAGE) bring about counter effects exacerbating the situation. Accumulation of diverse AGEs, synergistically down regulate AGE-R1 while up regulate RAGE causing vicious cycle leading to enhanced formation and further accumulation of AGEs. In this article we discuss the formation of heterogeneous AGEs, importance of detection and quantification of AGEs, biological degradation of AGEs via different receptors, AGE-RAGE and its role in proinflammatory signaling, AGE mediated diabetic vascular complications such as nephropathy, retinopathy, neuropathy, cardiovascular and cerebrovascular diseases and finally the biological inhibition of AGEs is discussed along with chemical inhibitors for AGEs and natural products in AGE inhibition as a measure for the prevention of diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daneman D (2006) Type 1 diabetes. Lancet 367(9513):847–858

    Article  CAS  PubMed  Google Scholar 

  2. Ward WK, Bolgiano DC, McKnight B, Halter JB, Porte D Jr (1984) Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Invest 74(4):1318–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scully T (2012) Diabetes in numbers. Nature 485(7398):S2–S3

    Article  CAS  PubMed  Google Scholar 

  4. Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46(1):223–234

    Article  CAS  PubMed  Google Scholar 

  5. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48(1):1–9

    Article  CAS  PubMed  Google Scholar 

  6. Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344(Pt 1):109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmed N (2005) Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes Res Clin Pract 67(1):3–21

    Article  CAS  PubMed  Google Scholar 

  8. Wolff SP, Dean RT (1987) Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes. Biochem J 245(1):243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horiuchi S (1996) Advanced Glycation end products (AGE)-modified proteins and their potential relevance to atherosclerosis. Trends Cardiovasc Med 6(5):163–168

    Article  CAS  PubMed  Google Scholar 

  10. Monnier VM, Cerami A (1982) Nonenzymatic glycosylation and browning in diabetes and aging: studies on lens proteins. Diabetes 31(Supplement 3):57–63

    Article  CAS  Google Scholar 

  11. Vlassara H (1997) Recent progress in advanced glycation end products and diabetic complications. Diabetes 46(Suppl 2):S19–S25

    Article  CAS  PubMed  Google Scholar 

  12. Bohlender JM, Franke S, Stein G, Wolf G (2005) Advanced glycation end products and the kidney. Am J Physiol Renal Physiol 289(4):F645–F659

    Article  CAS  PubMed  Google Scholar 

  13. Chen SJ, Aikawa C, Yoshida R, Matsui T (2015) Methylglyoxal-derived hydroimidazolone residue of plasma protein can behave as a predictor of prediabetes in Spontaneously Diabetic Torii rats. Physiol Rep 3(8)

    Google Scholar 

  14. Ghanem AA, Elewa A, Arafa LF (2011) Pentosidine and N-carboxymethyl-lysine: biomarkers for type 2 diabetic retinopathy. Eur J Ophthalmol 21(1):48–54

    Article  PubMed  Google Scholar 

  15. Kalousova M, Zima T, Tesar V, Stipek S, Sulkova S (2004) Advanced glycation end products in clinical nephrology. Kidney Blood Press Res 27(1):18–28

    Article  CAS  PubMed  Google Scholar 

  16. Lieuw AFML, van Hinsbergh VW, Teerlink T, Barto R, Twisk J, Stehouwer CD, Schalkwijk CG (2004) Increased levels of N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine in type 1 diabetic patients with impaired renal function: correlation with markers of endothelial dysfunction. Nephrol Dial Transplant 19(3):631–636

    Article  Google Scholar 

  17. Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, Heitmann K, Vlassara H (1997) Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A 94(12):6474–6479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820

    Article  CAS  PubMed  Google Scholar 

  19. Li YM, Mitsuhashi T, Wojciechowicz D, Shimizu N, Li J, Stitt A, He C, Banerjee D, Vlassara H (1996) Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc Natl Acad Sci U S A 93(20):11047–11052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu C, He JC, Cai W, Liu H, Zhu L, Vlassara H (2004) Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci U S A 101(32):11767–11772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He CJ, Koschinsky T, Buenting C, Vlassara H (2001) Presence of diabetic complications in type 1 diabetic patients correlates with low expression of mononuclear cell AGE-receptor-1 and elevated serum AGE. Mol Med 7(3):159–168

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang Z, Makita Z, Horii Y, Brunelle S, Cerami A, Sehajpal P, Suthanthiran M, Vlassara H (1991) Two novel rat liver membrane proteins that bind advanced glycosylation endproducts: relationship to macrophage receptor for glucose-modified proteins. J Exp Med 174(3):515–524

    Article  CAS  PubMed  Google Scholar 

  23. Vlassara H, Li YM, Imani F, Wojciechowicz D, Yang Z, Liu FT, Cerami A (1995) Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med 1(6):634–646

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pugliese G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotti P, Frigeri L, Hsu DK, Vlassara H, Liu FT, Di Mario U (2001) Accelerated diabetic glomerulopathy in galectin-3/AGE receptor 3 knockout mice. FASEB J 15(13):2471–2479

    Article  CAS  PubMed  Google Scholar 

  25. Radoff S, Vlassara H, Cerami A (1988) Characterization of a solubilized cell surface binding protein on macrophages specific for proteins modified nonenzymatically by advanced glycosylated end products. Arch Biochem Biophys 263(2):418–423

    Article  CAS  PubMed  Google Scholar 

  26. Vlassara H, Brownlee M, Cerami A (1985) High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: a potential mechanism for the removal of senescent macromolecules. Proc Natl Acad Sci U S A 82(17):5588–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Araki N, Ueno N, Chakrabarti B, Morino Y, Horiuchi S (1992) Immunochemical evidence for the presence of advanced glycation end products in human lens proteins and its positive correlation with aging. J Biol Chem 267(15):10211–10214

    CAS  PubMed  Google Scholar 

  28. Nagai R, Matsumoto K, Ling X, Suzuki H, Araki T, Horiuchi S (2000) Glycolaldehyde, a reactive intermediate for advanced glycation end products, plays an important role in the generation of an active ligand for the macrophage scavenger receptor. Diabetes 49(10):1714–1723

    Article  CAS  PubMed  Google Scholar 

  29. Sano H, Nagai R, Matsumoto K, Horiuchi S (1999) Receptors for proteins modified by Advanced Glycation Endproducts (AGE)—their functional role in atherosclerosis. Mech Ageing Dev 107(3):333–346

    Article  CAS  PubMed  Google Scholar 

  30. Acton S, Rigotti A, Landschulz KT, Xu S (1996) Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271(5248):518

    Article  CAS  PubMed  Google Scholar 

  31. Chinetti G, Gbaguidi FG, Griglio S, Mallat Z, Antonucci M, Poulain P, Chapman J, Fruchart J-C, Tedgui A, Najib-Fruchart J (2000) CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors. Circulation 101(20):2411–2417

    Article  CAS  PubMed  Google Scholar 

  32. Ji Y, Jian B, Wang N, Sun Y, de la Llera MM, Phillips MC, Rothblat GH, Swaney JB, Tall AR (1997) Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem 272(34):20982–20985

    Article  CAS  PubMed  Google Scholar 

  33. Ohgami N, Nagai R, Miyazaki A, Ikemoto M, Arai H, Horiuchi S, Nakayama H (2001) Scavenger receptor class B type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J Biol Chem 276(16):13348–13355

    Article  CAS  PubMed  Google Scholar 

  34. Krieger M (2001) Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest 108(6):793–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, Nakayama H (2001) Cd36, a member of the class b scavenger receptor family, as a receptor for advanced glycation end products. J Biol Chem 276(5):3195–3202

    Article  CAS  PubMed  Google Scholar 

  36. Vlassara H (2001) The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab Res Rev 17(6):436–443

    Article  CAS  PubMed  Google Scholar 

  37. Mackic JB, Stins M, McComb JG, Calero M, Ghiso J, Kim KS, Yan SD, Stern D, Schmidt AM, Frangione B, Zlokovic BV (1998) Human blood-brain barrier receptors for Alzheimer's amyloid-beta 1–40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J Clin Invest 102(4):734–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan SD, Roher A, Schmidt AM, Stern DM (1999) Cellular cofactors for amyloid beta-peptide-induced cell stress. Moving from cell culture to in vivo. Am J Pathol 155(5):1403–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidt AM, Yan SD, Wautier JL, Stern D (1999) Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84(5):489–497

    Article  CAS  PubMed  Google Scholar 

  40. Makita Z, Bucala R, Rayfield E, Fuh H, Manogue K, Cerami A, Viassara H, Friedman E, Kaufman A, Korbet S (1994) Reactive glycosylation endproducts in diabetic uraemia and treatment of renal failure. Lancet 343(8912):1519–1522

    Article  CAS  PubMed  Google Scholar 

  41. Makita Z, Radoff S, Rayfield EJ, Yang Z, Skolnik E, Delaney V, Friedman EA, Cerami A, Vlassara H (1991) Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med 325(12):836–842

    Article  CAS  PubMed  Google Scholar 

  42. Neeper M, Schmidt A, Brett J, Yan S, Wang F, Pan Y, Elliston K, Stern D, Shaw A (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004

    CAS  PubMed  Google Scholar 

  43. Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, Nagashima M, Morser J, Arnold B, Preissner KT (2003) The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte Integrins a novel pathway for inflammatory cell recruitment. J Exp Med 198(10):1507–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267(21):14987–14997

    CAS  PubMed  Google Scholar 

  45. Huttunen HJ, Fages C, Rauvala H (1999) Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-κB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem 274(28):19919–19924

    Article  CAS  PubMed  Google Scholar 

  46. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D (1999) N ε-(carboxymethyl) lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. J Biol Chem 274(44):31740–31749

    Article  CAS  PubMed  Google Scholar 

  47. Pollreisz A, Hudson BI, Chang JS, Qu W, Cheng B, Papapanou PN, Schmidt AM, Lalla E (2010) Receptor for advanced glycation endproducts mediates pro-atherogenic responses to periodontal infection in vascular endothelial cells. Atherosclerosis 212(2):451–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang F, Kent KC, Yamanouchi D, Zhang Y, Kato K, Tsai S, Nowygrod R, Schmidt AM, Liu B (2009) Anti-receptor for advanced glycation end products therapies as novel treatment for abdominal aortic aneurysm. Ann Surg 250(3):416

    PubMed  PubMed Central  Google Scholar 

  49. Nah S-S, Choi I-Y, Yoo B, Kim YG, Moon H-B, Lee C-K (2007) Advanced glycation end products increases matrix metalloproteinase-1,-3, and-13, and TNF-α in human osteoarthritic chondrocytes. FEBS Lett 581(9):1928–1932

    Article  CAS  PubMed  Google Scholar 

  50. Ohashi K, Takahashi HK, Mori S, Liu K, Wake H, Sadamori H, Matsuda H, Yagi T, Yoshino T, Nishibori M (2010) Advanced glycation end products enhance monocyte activation during human mixed lymphocyte reaction. Clin Immunol 134(3):345–353

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Wang H, Piper MG, McMaken S, Mo X, Opalek J, Schmidt AM, Marsh CB (2010) sRAGE induces human monocyte survival and differentiation. J Immunol 185(3):1822–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Liang C, Liu X, Liao B, Pan X, Ren Y, Fan M, Li M, He Z, Wu J (2010) AGEs increased migration and inflammatory responses of adventitial fibroblasts via RAGE, MAPK and NF-κB pathways. Atherosclerosis 208(1):34–42

    Article  CAS  PubMed  Google Scholar 

  53. Fritz G (2011) RAGE: a single receptor fits multiple ligands. Trends Biochem Sci 36(12):625–632

    Article  CAS  PubMed  Google Scholar 

  54. Kierdorf K, Fritz G (2013) RAGE regulation and signaling in inflammation and beyond. J Leukoc Biol 94(1):55–68

    Article  CAS  PubMed  Google Scholar 

  55. Batkulwar KB, Bansode SB, Patil GV, Godbole RK, Kazi RS, Chinnathambi S, Shanmugam D, Kulkarni MJ (2015) Investigation of phosphoproteome in RAGE signaling. Proteomics 15(2–3):245–259

    Article  CAS  PubMed  Google Scholar 

  56. Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Hui L, Yasui K, Takeuchi M, Makita Z, Takasawa S (2003) Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J 370(3):1097–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bierhaus A, Humpert PM, Morcos M, Wendt T, Chavakis T, Arnold B, Stern DM, Nawroth PP (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med 83(11):876–886

    Article  CAS  PubMed  Google Scholar 

  58. Zhang L, Bukulin M, Kojro E, Roth A, Metz VV, Fahrenholz F, Nawroth PP, Bierhaus A, Postina R (2008) Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. J Biol Chem 283(51):35507–35516

    Article  CAS  PubMed  Google Scholar 

  59. Ramasamy R, Yan SF, Schmidt AM (2011) Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 1243(1):88–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Daroux M, Prevost G, Maillard-Lefebvre H, Gaxatte C, D’Agati V, Schmidt A, Boulanger E (2010) Advanced glycation end-products: implications for diabetic and non-diabetic nephropathies. Diabetes Metab 36(1):1–10

    Article  CAS  PubMed  Google Scholar 

  61. Monnier VM, Sell DR, Genuth S (2005) Glycation products as markers and predictors of the progression of diabetic complications. Ann N Y Acad Sci 1043(1):567–581

    Article  CAS  PubMed  Google Scholar 

  62. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986

    Google Scholar 

  63. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33), UK Prospective Diabetes Study (UKPDS) Group (1998) Lancet 352(9131):837–853

    Article  Google Scholar 

  64. Bos DC, de Ranitz-Greven WL, de Valk HW (2011) Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review. Diabetes Technol Ther 13(7):773–779

    Article  CAS  PubMed  Google Scholar 

  65. Smit AJ, Gerrits EG (2010) Skin autofluorescence as a measure of advanced glycation endproduct deposition: a novel risk marker in chronic kidney disease. Curr Opin Nephrol Hypertens 19(6):527–533

    Article  CAS  PubMed  Google Scholar 

  66. Mulder DJ, TVD W, Lutgers HL, Graaff R, Gans RO, Zijlstra F, Smit AJ (2006) Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations. Diabetes Technol Ther 8(5):523–535

    Article  CAS  PubMed  Google Scholar 

  67. Pereira Morais MP, Mackay JD, Bhamra SK, Buchanan JG, James TD, Fossey JS, van den Elsen JM (2010) Analysis of protein glycation using phenylboronate acrylamide gel electrophoresis. Proteomics 10(1):48–58

    Article  CAS  Google Scholar 

  68. Lapolla A, Fedele D, Seraglia R, Traldi P (2006) The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update. Mass Spectrom Rev 25(5):775–797

    Article  CAS  PubMed  Google Scholar 

  69. Lapolla A, Fedele D, Traldi P (2000) The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes. Mass Spectrom Rev 19(5):279–304

    Article  CAS  PubMed  Google Scholar 

  70. Priego Capote F, Sanchez JC (2009) Strategies for proteomic analysis of non-enzymatically glycated proteins. Mass Spectrom Rev 28(1):135–146

    Article  PubMed  CAS  Google Scholar 

  71. Zhang Q, Tang N, Schepmoes AA, Phillips LS, Smith RD, Metz TO (2008) Proteomic profiling of nonenzymatically glycated proteins in human plasma and erythrocyte membranes. J Proteome Res 7(5):2025–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gadgil HS, Bondarenko PV, Pipes G, Rehder D, McAuley A, Perico N, Dillon T, Ricci M, Treuheit M (2007) The LC/MS analysis of glycation of IgG molecules in sucrose containing formulations. J Pharm Sci 96(10):2607–2621

    Article  CAS  PubMed  Google Scholar 

  73. Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO (2008) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res 8(2):754–769

    Article  CAS  Google Scholar 

  74. Priego-Capote F, Ramírez-Boo M, Hochstrasser D, Sanchez J-C (2011) Qualitative and quantitative analysis of glycated proteins in human plasma by glucose isotopic labeling with 13 C 6-reducing sugars. Serum/Plasma Proteomics: Methods and Protocols, Totowa, pp 219–232

    Google Scholar 

  75. Priego-Capote F, Scherl A, Müller M, Waridel P, Lisacek F, Sanchez J-C (2010) Glycation isotopic labeling with 13C-reducing sugars for quantitative analysis of glycated proteins in human plasma. Mol Cell Proteomics 9(3):579–592

    Article  CAS  PubMed  Google Scholar 

  76. Korwar AM, Vannuruswamy G, Jagadeeshaprasad MG, Jayaramaiah RH, Bhat S, Regin BS, Ramaswamy S, Giri AP, Mohan V, Balasubramanyam M (2015) Development of diagnostic fragment ion library for glycated peptides of human serum albumin: targeted quantification in prediabetic, diabetic, and microalbuminuria plasma by parallel reaction monitoring, SWATH, and MSE. Mol Cell Proteomics 14(8):2150–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ritz E, Rychlik I, Locatelli F, Halimi S (1999) End-stage renal failure in type 2 diabetes: a medical catastrophe of worldwide dimensions. Am J Kidney Dis 34(5):795–808

    Article  CAS  PubMed  Google Scholar 

  78. Remuzzi G, Schieppati A, Ruggenenti P (2002) Clinical practice. Nephropathy in patients with type 2 diabetes. N Engl J Med 346(15):1145–1151

    Article  PubMed  Google Scholar 

  79. Miyata T, Ueda Y, Horie K, Nangaku M, Tanaka S, van Ypersele de Strihou C, Kurokawa K (1998) Renal catabolism of advanced glycation end products: the fate of pentosidine. Kidney Int 53(2):416–422

    Article  CAS  PubMed  Google Scholar 

  80. Verbeke P, Perichon M, Borot-Laloi C, Schaeverbeke J, Bakala H (1997) Accumulation of advanced glycation endproducts in the rat nephron: link with circulating AGEs during aging. J Histochem Cytochem 45(8):1059–1068

    Article  CAS  PubMed  Google Scholar 

  81. Suzuki D, Yagame M, Jinde K, Naka R, Yano N, Endoh M, Kaneshige H, Nomoto Y, Sakai H (1996) Immunofluorescence staining of renal biopsy samples in patients with diabetic nephropathy in non-insulin-dependent diabetes mellitus using monoclonal antibody to reduced glycated lysine. J Diabetes Complicat 10(6):314–319

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki D, Miyata T, Saotome N, Horie K, Inagi R, Yasuda Y, Uchida K, Izuhara Y, Yagame M, Sakai H, Kurokawa K (1999) Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J Am Soc Nephrol 10(4):822–832

    CAS  PubMed  Google Scholar 

  83. Bansode SB, Chougale AD, Joshi RS, Giri AP, Bodhankar SL, Harsulkar AM, Kulkarni MJ (2013) Proteomic analysis of protease resistant proteins in the diabetic rat kidney. Mol Cell Proteomics 12(1):228–236

    Article  PubMed  CAS  Google Scholar 

  84. Chougale AD, Bhat SP, Bhujbal SV, Zambare MR, Puntambekar S, Somani RS, Boppana R, Giri AP, Kulkarni MJ (2012) Proteomic analysis of glycated proteins from streptozotocin-induced diabetic rat kidney. Mol Biotechnol 50(1):28–38

    Article  CAS  PubMed  Google Scholar 

  85. Beisswenger PJ, Makita Z, Curphey TJ, Moore LL, Jean S, Brinck-Johnsen T, Bucala R, Vlassara H (1995) Formation of immunochemical advanced glycosylation end products precedes and correlates with early manifestations of renal and retinal disease in diabetes. Diabetes 44(7):824–829

    Article  CAS  PubMed  Google Scholar 

  86. Bhonsle HS, Singh SK, Srivastava G, Boppana R, Kulkarni MJ (2008) Albumin competitively inhibits glycation of less abundant proteins. Protein Pept Lett 15(7):663–667

    Article  CAS  PubMed  Google Scholar 

  87. Bhonsle HS, Korwar AM, Kote SS, Golegaonkar SB, Chougale AD, Shaik ML, Dhande NL, Giri AP, Shelgikar KM, Boppana R, Kulkarni MJ (2012) Low plasma albumin levels are associated with increased plasma protein glycation and HbA1c in diabetes. J Proteome Res 11(2):1391–1396

    Article  CAS  PubMed  Google Scholar 

  88. Bouma B, Kroon-Batenburg LM, Wu YP, Brunjes B, Posthuma G, Kranenburg O, de Groot PG, Voest EE, Gebbink MF (2003) Glycation induces formation of amyloid cross-beta structure in albumin. J Biol Chem 278(43):41810–41819

    Article  CAS  PubMed  Google Scholar 

  89. Velez MG, Bhalla V (2012) The role of the immune system in the pathogenesis of diabetic nephropathy. J Nephrol Ther 10:523–535

    Google Scholar 

  90. Bhat S, Jagadeeshaprasad MG, Patil YR, Shaikh ML, Regin BS, Mohan V, Giri AP, Balasubramanyam M, Boppana R, Kulkarni MJ (2016) Proteomic insight reveals elevated levels of albumin in circulating immune complexes in diabetic plasma. Mol Cell Proteomics 15(6):2011–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen S, Hong SW, Iglesias-dela Cruz MC, Isono M, Casaretto A, Ziyadeh FN (2001) The key role of the transforming growth factor-β system in the pathogenesis of diabetic nephropathy. Ren Fail 23(3–4):471–481

    Article  CAS  PubMed  Google Scholar 

  92. Brownlee M (1994) Lilly Lecture 1993. Glycation and diabetic complications. Diabetes 43(6):836–841

    Article  CAS  PubMed  Google Scholar 

  93. Mott JD, Khalifah RG, Nagase H, Shield CF 3rd, Hudson JK, Hudson BG (1997) Nonenzymatic glycation of type IV collagen and matrix metalloproteinase susceptibility. Kidney Int 52(5):1302–1312

    Article  CAS  PubMed  Google Scholar 

  94. Schlondorff D (1987) The glomerular mesangial cell: an expanding role for a specialized pericyte. J Off Publ Fede Am Soc Exp Biol 1(4):272–281

    CAS  Google Scholar 

  95. Yamagishi S, Inagaki Y, Okamoto T, Amano S, Koga K, Takeuchi M, Makita Z (2002) Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells. J Biol Chem 277(23):20309–20315

    Article  CAS  PubMed  Google Scholar 

  96. de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH (2001) Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 12(5):993–1000

    PubMed  Google Scholar 

  97. Matsumura T, Yamagishi S, Brownlee M (2000) Advanced glycation end products and the pathogenesis of diabetic complications Diabetes mellitus: a fundamental and clinical text. Lippincott Williams & Wilkins, New York

    Google Scholar 

  98. Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP (1998) AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. AGE concept. Cardiovasc Res 37(3):586–600

    Article  CAS  PubMed  Google Scholar 

  99. Wendt T, Bucciarelli L, Qu W, Lu Y, Yan SF, Stern DM, Schmidt AM (2002) Receptor for advanced glycation endproducts (RAGE) and vascular inflammation: insights into the pathogenesis of macrovascular complications in diabetes. Curr Atheroscler rep 4(3):228–237

    Article  PubMed  Google Scholar 

  100. Yamagishi S, Imaizumi T (2005) Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 11(18):2279–2299

    Article  CAS  PubMed  Google Scholar 

  101. Ha H, Hwang IA, Park JH, Lee HB (2008) Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract 82(Suppl 1):S42–S45

    Article  CAS  PubMed  Google Scholar 

  102. Yamagishi S, Inagaki Y, Okamoto T, Amano S, Koga K, Takeuchi M (2003) Advanced glycation end products inhibit de novo protein synthesis and induce TGF-beta overexpression in proximal tubular cells. Kidney Int 63(2):464–473

    Article  CAS  PubMed  Google Scholar 

  103. Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J, Hong M, Luther T, Henle T, Kloting I, Morcos M, Hofmann M, Tritschler H, Weigle B, Kasper M, Smith M, Perry G, Schmidt AM, Stern DM, Haring HU, Schleicher E, Nawroth PP (2001) Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 50(12):2792–2808

    Article  CAS  PubMed  Google Scholar 

  104. Suzuki D, Toyoda M, Yamamoto N, Miyauchi M, Katoh M, Kimura M, Maruyama M, Honma M, Umezono T, Yagame M (2006) Relationship between the expression of advanced glycation end-products (AGE) and the receptor for AGE (RAGE) mRNA in diabetic nephropathy. Intern Med 45(7):435–441

    Article  PubMed  Google Scholar 

  105. Tanji N, Markowitz GS, Fu C, Kislinger T, Taguchi A, Pischetsrieder M, Stern D, Schmidt AM, D'Agati VD (2000) Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. J Am Soc Nephrol 11(9):1656–1666

    CAS  PubMed  Google Scholar 

  106. Flyvbjerg A, Denner L, Schrijvers BF, Tilton RG, Mogensen TH, Paludan SR, Rasch R (2004) Long-term renal effects of a neutralizing RAGE antibody in obese type 2 diabetic mice. Diabetes 53(1):166–172

    Article  CAS  PubMed  Google Scholar 

  107. Jensen LJ, Denner L, Schrijvers BF, Tilton RG, Rasch R, Flyvbjerg A (2006) Renal effects of a neutralising RAGE-antibody in long-term streptozotocin-diabetic mice. J Endocrinol 188(3):493–501

    Article  CAS  PubMed  Google Scholar 

  108. Yamamoto Y, Kato I, Doi T, Yonekura H, Ohashi S, Takeuchi M, Watanabe T, S-i Y, Sakurai S, Takasawa S (2001) Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J Clin Invest 108(2):261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wendt TM, Tanji N, Guo J, Kislinger TR, Qu W, Lu Y, Bucciarelli LG, Rong LL, Moser B, Markowitz GS (2003) RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy. Am J Pathol 162(4):1123–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ciulla TA, Amador AG, Zinman B (2003) Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care 26(9):2653–2664

    Article  PubMed  Google Scholar 

  111. Frank RN (2004) Diabetic retinopathy. N Engl J Med 350(1):48–58

    Article  CAS  PubMed  Google Scholar 

  112. Aiello LP, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris F 3rd, Klein R (1998) Diabetic retinopathy. Diabetes Care 21(1):143

    Article  CAS  PubMed  Google Scholar 

  113. Harris MI (1993) Undiagnosed NIDDM: clinical and public health issues. Diabetes Care 16(4):642–652

    Article  CAS  PubMed  Google Scholar 

  114. Klein R, Klein BE, Moss SE (1989) The Wisconsin epidemiological study of diabetic retinopathy: a review. Diabetes Metab rev 5(7):559–570

    Article  CAS  PubMed  Google Scholar 

  115. Romero-Aroca P, Sagarra-Alamo R, Basora-Gallisa J, Basora-Gallisa T, Baget-Bernaldiz M, Bautista-Perez A (2010) Prospective comparison of two methods of screening for diabetic retinopathy by nonmydriatic fundus camera. Clin Ophthalmol 4:1481–1488

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gabbay KH (1975) Hyperglycemia, polyol metabolism, and complications of diabetes mellitus. Annu Rev Med 26:521–536

    Article  CAS  PubMed  Google Scholar 

  117. Hammes HP, Alt A, Niwa T, Clausen JT, Bretzel RG, Brownlee M, Schleicher ED (1999) Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia 42(6):728–736

    Article  CAS  PubMed  Google Scholar 

  118. Stitt AW, Li YM, Gardiner TA, Bucala R, Archer DB, Vlassara H (1997) Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats. Am J Pathol 150(2):523–531

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mamputu JC, Renier G (2004) Advanced glycation end-products increase monocyte adhesion to retinal endothelial cells through vascular endothelial growth factor-induced ICAM-1 expression: inhibitory effect of antioxidants. J Leukoc Biol 75(6):1062–1069

    Article  CAS  PubMed  Google Scholar 

  120. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW (1998) Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 47(12):1953–1959

    Article  CAS  PubMed  Google Scholar 

  121. Murata T, Nagai R, Ishibashi T, Inomuta H, Ikeda K, Horiuchi S (1997) The relationship between accumulation of advanced glycation end products and expression of vascular endothelial growth factor in human diabetic retinas. Diabetologia 40(7):764–769

    Article  CAS  PubMed  Google Scholar 

  122. Choudhuri S, Dutta D, Sen A, Chowdhury IH, Mitra B, Mondal LK, Saha A, Bhadhuri G, Bhattacharya B (2013) Role of N-epsilon- carboxy methyl lysine, advanced glycation end products and reactive oxygen species for the development of nonproliferative and proliferative retinopathy in type 2 diabetes mellitus. Mol Vis 19:100–113

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Berner AK, Brouwers O, Pringle R, Klaassen I, Colhoun L, McVicar C, Brockbank S, Curry JW, Miyata T, Brownlee M, Schlingemann RO, Schalkwijk C, Stitt AW (2012) Protection against methylglyoxal-derived AGEs by regulation of glyoxalase 1 prevents retinal neuroglial and vasodegenerative pathology. Diabetologia 55(3):845–854

    Article  CAS  PubMed  Google Scholar 

  124. Ai J, Liu Y, Sun JH (2013) Advanced glycation end-products stimulate basic fibroblast growth factor expression in cultured Muller cells. Mol Med Rep 7(1):16–20

    CAS  PubMed  Google Scholar 

  125. Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, Yamamoto H (2000) The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells. J Biol Chem 275(33):25781–25790

    Article  CAS  PubMed  Google Scholar 

  126. Stitt AW, Hughes SJ, Canning P, Lynch O, Cox O, Frizzell N, Thorpe SR, Cotter TG, Curtis TM, Gardiner TA (2004) Substrates modified by advanced glycation end-products cause dysfunction and death in retinal pericytes by reducing survival signals mediated by platelet-derived growth factor. Diabetologia 47(10):1735–1746

    Article  CAS  PubMed  Google Scholar 

  127. Yamagishi S, Hsu CC, Taniguchi M, Harada S, Yamamoto Y, Ohsawa K, Kobayashi K, Yamamoto H (1995) Receptor-mediated toxicity to pericytes of advanced glycosylation end products: a possible mechanism of pericyte loss in diabetic microangiopathy. Biochem Biophys Res Commun 213(2):681–687

    Article  CAS  PubMed  Google Scholar 

  128. Boulton AJ, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D, American Diabetes A (2005) Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28(4):956–962

    Article  PubMed  Google Scholar 

  129. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11(6):521–534

    Article  PubMed  PubMed Central  Google Scholar 

  130. Huijberts MS, Schaper NC, Schalkwijk CG (2008) Advanced glycation end products and diabetic foot disease. Diabetes Metab Res Rev 24(Suppl 1):S19–S24

    Article  CAS  PubMed  Google Scholar 

  131. Sugimoto K, Nishizawa Y, Horiuchi S, Yagihashi S (1997) Localization in human diabetic peripheral nerve of N(epsilon)-carboxymethyllysine-protein adducts, an advanced glycation endproduct. Diabetologia 40(12):1380–1387

    Article  CAS  PubMed  Google Scholar 

  132. Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120(1):1–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vincent AM, Callaghan BC, Smith AL, Feldman EL (2011) Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 7(10):573–583

    Article  CAS  PubMed  Google Scholar 

  134. Williams SK, Howarth NL, Devenny JJ, Bitensky MW (1982) Structural and functional consequences of increased tubulin glycosylation in diabetes mellitus. Proc Natl Acad Sci U S A 79(21):6546–6550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pekiner C, Cullum NA, Hughes JN, Hargreaves AJ, Mahon J, Casson IF, McLean WG (1993) Glycation of brain actin in experimental diabetes. J Neurochem 61(2):436–442

    Article  CAS  PubMed  Google Scholar 

  136. Ryle C, Leow CK, Donaghy M (1997) Nonenzymatic glycation of peripheral and central nervous system proteins in experimental diabetes mellitus. Muscle Nerve 20(5):577–584

    Article  CAS  PubMed  Google Scholar 

  137. Federoff HJ, Lawrence D, Brownlee M (1993) Nonenzymatic glycosylation of laminin and the laminin peptide CIKVAVS inhibits neurite outgrowth. Diabetes 42(4):509–513

    Article  CAS  PubMed  Google Scholar 

  138. Vlassara H, Moldawer L, Chan B (1989) Macrophage/monocyte receptor for nonenzymatically glycosylated protein is upregulated by cachectin/tumor necrosis factor. J Clin Invest 84(6):1813–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. King RH (2001) The role of glycation in the pathogenesis of diabetic polyneuropathy. Mol Pathol 54(6):400–408

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Bucala R, Tracey KJ, Cerami A (1991) Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 87(2):432–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM (2005) Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15(7):16R–28R

    Article  CAS  PubMed  Google Scholar 

  142. Vincent AM, Perrone L, Sullivan KA, Backus C, Sastry AM, Lastoskie C, Feldman EL (2007) Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology 148(2):548–558

    Article  CAS  PubMed  Google Scholar 

  143. Fornengo P, Bosio A, Epifani G, Pallisco O, Mancuso A, Pascale C (2006) Prevalence of silent myocardial ischaemia in new-onset middle-aged type 2 diabetic patients without other cardiovascular risk factors. J Br Diabetic Assoc 23(7):775–779

    Article  CAS  Google Scholar 

  144. Zhou H, Zhang X, Lu J (2014) Progress on diabetic cerebrovascular diseases. Bosn J Basic Med Sci 14(4):185–190

    Article  PubMed  PubMed Central  Google Scholar 

  145. Pu LJ, Lu L, Xu XW, Zhang RY, Zhang Q, Zhang JS, Hu J, Yang ZK, Ding FH, Chen QJ, Lou S, Shen J, Fang DH, Shen WF (2006) Value of serum glycated albumin and high-sensitivity C-reactive protein levels in the prediction of presence of coronary artery disease in patients with type 2 diabetes. Cardiovasc Diabetol 5:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Kilhovd BK, Berg TJ, Birkeland KI, Thorsby P, Hanssen KF (1999) Serum levels of advanced glycation end products are increased in patients with type 2 diabetes and coronary heart disease. Diabetes Care 22(9):1543–1548

    Article  CAS  PubMed  Google Scholar 

  147. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A (1986) Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking. Science 232(4758):1629–1632

    Article  CAS  PubMed  Google Scholar 

  148. Steinbrecher UP, Witztum JL (1984) Glucosylation of low-density lipoproteins to an extent comparable to that seen in diabetes slows their catabolism. Diabetes 33(2):130–134

    Article  CAS  PubMed  Google Scholar 

  149. Klein R (1995) Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care 18(2):258–268

    Article  CAS  PubMed  Google Scholar 

  150. Sobenin IA, Tertov VV, Koschinsky T, Bunting CE, Slavina ES, Dedov II, Orekhov AN (1993) Modified low density lipoprotein from diabetic patients causes cholesterol accumulation in human intimal aortic cells. Atherosclerosis 100(1):41–54

    Article  CAS  PubMed  Google Scholar 

  151. Bowie A, Owens D, Collins P, Johnson A, Tomkin GH (1993) Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient? Atherosclerosis 102(1):63–67

    Article  CAS  PubMed  Google Scholar 

  152. Brownlee M, Vlassara H, Cerami A (1985) Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes 34(9):938–941

    Article  CAS  PubMed  Google Scholar 

  153. Shen Y, Ding FH, Sun JT, Pu LJ, Zhang RY, Zhang Q, Chen QJ, Shen WF, Lu L (2015) Association of elevated apoA-I glycation and reduced HDL-associated paraoxonase1, 3 activity, and their interaction with angiographic severity of coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 14:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, Farb A, Virmani R (2004) Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 24(7):1266–1271

    Article  CAS  PubMed  Google Scholar 

  155. Wautier JL, Wautier MP, Schmidt AM, Anderson GM, Hori O, Zoukourian C, Capron L, Chappey O, Yan SD, Brett J et al (1994) Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications. Proc Natl Acad Sci U S A 91(16):7742–7746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96(3):1395–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Esposito C, Gerlach H, Brett J, Stern D, Vlassara H (1989) Endothelial receptor-mediated binding of glucose-modified albumin is associated with increased monolayer permeability and modulation of cell surface coagulant properties. J Exp Med 170(4):1387–1407

    Article  CAS  PubMed  Google Scholar 

  158. Kirstein M, Brett J, Radoff S, Ogawa S, Stern D, Vlassara H (1990) Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc Natl Acad Sci U S A 87(22):9010–9014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Brownlee M, Vlassara H, Cerami A (1984) Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 101(4):527–537

    Article  CAS  PubMed  Google Scholar 

  160. Szwergold BS (2005) Intrinsic toxicity of glucose, due to non-enzymatic glycation, is controlled in-vivo by deglycation systems including: FN3K-mediated deglycation of fructosamines and transglycation of aldosamines. Med Hypotheses 65(2):337–348

    Article  CAS  PubMed  Google Scholar 

  161. Wu X, Monnier VM (2003) Enzymatic deglycation of proteins. Arch Biochem Biophys 419(1):16–24

    Article  CAS  PubMed  Google Scholar 

  162. Szwergold BS, Howell SK, Beisswenger PJ (2005) Transglycation--a potential new mechanism for deglycation of Schiff's bases. Ann N Y Acad Sci 1043:845–864

    Article  CAS  PubMed  Google Scholar 

  163. Takahashi M, Fujii J, Teshima T, Suzuki K, Shiba T, Taniguchi N (1993) Identity of a major 3-deoxyglucosone-reducing enzyme with aldehyde reductase in rat liver established by amino acid sequencing and cDNA expression. Gene 127(2):249–253

    Article  CAS  PubMed  Google Scholar 

  164. Yan SF, Ramasamy R, Schmidt AM (2010) Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol 79(10):1379–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Galichet A, Weibel M, Heizmann CW (2008) Calcium-regulated intramembrane proteolysis of the RAGE receptor. Biochem Biophys Res Commun 370(1):1–5

    Article  CAS  PubMed  Google Scholar 

  166. Ojima A, Matsui T, Maeda S, Takeuchi M, Yamagishi S (2012) Glucose-dependent insulinotropic polypeptide (GIP) inhibits signaling pathways of advanced glycation end products (AGEs) in endothelial cells via its antioxidative properties. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme 44(7):501–505

    Article  CAS  PubMed  Google Scholar 

  167. Choi SY, Jung SH, Lee HS, Park KW, Yun BS, Lee KW (2008) Glycation inhibitory activity and the identification of an active compound in Plantago asiatica extract. Phytother Res 22(3):323–329

    Article  CAS  PubMed  Google Scholar 

  168. Hipkiss AR, Michaelis J, Syrris P, Kumar S, Lam Y (1994) Carnosine protects proteins against in vitro glycation and cross-linking. Biochem Soc Trans 22(4):399S

    Article  CAS  PubMed  Google Scholar 

  169. Mendez JD, Leal LI (2004) Inhibition of in vitro pyrraline formation by L-arginine and polyamines. Biomed Pharmacother = Biomedecine & Pharmacotherapie 58(10):598–604

    Article  CAS  Google Scholar 

  170. Sulochana KN, Punitham R, Ramakrishnan S (1998) Beneficial effect of lysine and amino acids on cataractogenesis in experimental diabetes through possible antiglycation of lens proteins. Exp Eye Res 67(5):597–601

    Article  CAS  PubMed  Google Scholar 

  171. Kesavan SK, Bhat S, Golegaonkar SB, Jagadeeshaprasad MG, Deshmukh AB, Patil HS, Bhosale SD, Shaikh ML, Thulasiram HV, Boppana R (2013) Proteome wide reduction in AGE modification in streptozotocin induced diabetic mice by hydralazine mediated transglycation. Sci Rep 3:2941

    Article  PubMed  PubMed Central  Google Scholar 

  172. Rao GN, Cotlier E (1988) Aspirin prevents the nonenzymatic glycosylation and carbamylation of the human eye lens crystallins in vitro. Biochem Biophys Res Commun 151(3):991–996

    Article  CAS  PubMed  Google Scholar 

  173. Vannuruswamy G, Jagadeeshaprasad MG, Kashinath K, Kesavan SK, Bhat S, Korwar AM, Chougale AD, Boppana R, Reddy DS, Kulkarni MJ (2016) Molecules with O-acetyl group protect protein glycation by acetylating lysine residues. RSC Adv 6(70):65572–65578

    Article  CAS  Google Scholar 

  174. Khalifah RG, Baynes JW, Hudson BG (1999) Amadorins: novel post-Amadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun 257(2):251–258

    Article  CAS  PubMed  Google Scholar 

  175. Voziyan PA, Hudson BG (2005) Pyridoxamine: the many virtues of a maillard reaction inhibitor. Ann N Y Acad Sci 1043:807–816

    Article  CAS  PubMed  Google Scholar 

  176. Nakamura S, Makita Z, Ishikawa S, Yasumura K, Fujii W, Yanagisawa K, Kawata T, Koike T (1997) Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes 46(5):895–899

    Article  CAS  PubMed  Google Scholar 

  177. Ruggiero-Lopez D, Lecomte M, Moinet G, Patereau G, Lagarde M, Wiernsperger N (1999) Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem Pharmacol 58(11):1765–1773

    Article  CAS  PubMed  Google Scholar 

  178. Vasan S, Foiles P, Founds H (2003) Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys 419(1):89–96

    Article  CAS  PubMed  Google Scholar 

  179. Li G, Tang J, Du Y, Lee CA, Kern TS (2011) Beneficial effects of a novel RAGE inhibitor on early diabetic retinopathy and tactile allodynia. Mol Vis 17:3156–3165

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, Stern D, Schmidt AM (1998) Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med 4(9):1025–1031

    Article  CAS  PubMed  Google Scholar 

  181. Saraswat M, Reddy PY, Muthenna P, Reddy GB (2009) Prevention of non-enzymic glycation of proteins by dietary agents: prospects for alleviating diabetic complications. Br J Nutr 101(11):1714–1721

    Article  CAS  PubMed  Google Scholar 

  182. Miyata T, CVY d S, Ueda Y, Ichimori K, Inagi R, Onogi H, Ishikawa N, Nangaku M, Kurokawa K (2002) Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms. J Am Soc Nephrol 13(10):2478–2487

    Article  CAS  PubMed  Google Scholar 

  183. Yoshida T, Yamagishi S, Nakamura K, Matsui T, Imaizumi T, Takeuchi M, Koga H, Ueno T, Sata M (2006) Telmisartan inhibits AGE-induced C-reactive protein production through downregulation of the receptor for AGE via peroxisome proliferator-activated receptor-gamma activation. Diabetologia 49(12):3094–3099

    Article  CAS  PubMed  Google Scholar 

  184. Wu J-W, Hsieh C-L, Wang H-Y, Chen H-Y (2009) Inhibitory effects of guava (Psidium guajava L.) leaf extracts and its active compounds on the glycation process of protein. Food Chem 113(1):78–84

    Article  CAS  Google Scholar 

  185. Chinchansure AA, Korwar AM, Kulkarni MJ, Joshi SP (2015) Recent development of plant products with anti-glycation activity: a review. RSC Adv 5(39):31113–31138

    Article  CAS  Google Scholar 

  186. Lv L, Shao X, Wang L, Huang D, Ho CT, Sang S (2010) Stilbene glucoside from Polygonum multiflorum Thunb.: a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal. J Agric Food Chem 58(4):2239–2245

    Article  CAS  PubMed  Google Scholar 

  187. Gutierrez RMP (2013) Inhibition of advanced glycation end products formation by stilbene and phenanthrene derivatives from Prosthechea Michuacana in vitro and in vivo. Bol Latinoam Caribe Plant Med Aromát 12(1):69–80

    Google Scholar 

  188. Pandey KB, Mishra N, Rizvi SI (2009) Myricetin may provide protection against oxidative stress in type 2 diabetic erythrocytes. Z Naturforsch C, J Biosci 64(9–10):626–630

    CAS  Google Scholar 

  189. Shao X, Chen H, Zhu Y, Sedighi R, Ho CT, Sang S (2014) Essential structural requirements and additive effects for flavonoids to scavenge methylglyoxal. J Agric Food Chem 62(14):3202–3210

    Article  CAS  Google Scholar 

  190. Wu CH, Huang SM, Yen GC (2011) Silymarin: a novel antioxidant with antiglycation and antiinflammatory properties in vitro and in vivo. Antioxid Redox Signal 14(3):353–366

    Article  CAS  PubMed  Google Scholar 

  191. Gugliucci A, Bastos DHM, Schulze J, Souza MFF (2009) Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins. Fitoterapia 80(6):339–344

    Article  CAS  PubMed  Google Scholar 

  192. Wang X, Li YL, Wu H, Liu JZ, Hu JX, Liao N, Peng J, Cao PP, Liang X, Hai CX (2011) Antidiabetic effect of oleanolic acid: a promising use of a traditional pharmacological agent. Phytother Res 25(7):1031–1040

    Article  CAS  PubMed  Google Scholar 

  193. Wang ZH, Hsu CC, Huang CN, Yin MC (2010) Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabetic mice. Eur J Pharmacol 628(1–3):255–260

    Article  CAS  PubMed  Google Scholar 

  194. Bodiga VL, Eda SR, Veduruvalasa VD, Mididodla LD, Parise PK, Kodamanchili S, Jallepalli S, Inapurapu SP, Neerukonda M, Vemuri PK, Bodiga S (2013) Attenuation of non-enzymatic thermal glycation of bovine serum albumin (BSA) using beta-carotene. Int J Biol Macromol 56:41–48

    Article  CAS  PubMed  Google Scholar 

  195. Ashraf JM, Shahab U, Tabrez S, Lee EJ, Choi I, Ahmad S (2015) Quercetin as a finer substitute to aminoguanidine in the inhibition of glycation products. Int J Biol Macromol 77:188–192

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh J. Kulkarni Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bhat, S., Mary, S., Giri, A.P., Kulkarni, M.J. (2017). Advanced Glycation End Products (AGEs) in Diabetic Complications. In: Kartha, C., Ramachandran, S., Pillai, R. (eds) Mechanisms of Vascular Defects in Diabetes Mellitus. Advances in Biochemistry in Health and Disease, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-60324-7_19

Download citation

Publish with us

Policies and ethics