End-User Development and Social Big Data – Towards Tailorable Situation Assessment with Social Media

  • Christian ReuterEmail author
  • Marc-André Kaufhold
  • Thomas Ludwig


The amount of data being available is increasing rapidly. Based on the technological advances with mobile and ubiquitous computing, the use of social media is getting more and more usual in daily life as well as in extraordinary situations, such as crises. Not surprisingly, this increasing use is one reason why data on the internet is also developing that fast. Currently, more than 3 billion people use the internet and the majority is also registered with social media services such as Facebook or Twitter. While processing this kind of data by the majority of non-technical users, concepts of End-User Development (EUD) are important. This chapter researches how concepts of EUD might be applied to handle social big data. Based on foundations and an empirical pre-study, we explore how EUD can support the gathering and assessment process of social media. In this context, we investigate how end-users can articulate their personal quality criteria appropriately and how the selection of relevant data can be supported by EUD approaches. We present a tailorable social media gathering service and quality assessment service for social media content, which has been implemented and integrated into an application for both volunteers and the emergency services.


Social media information quality tailoring End-User Development emergencies 



The research project EmerGent’ was funded by a grant of the European Union (FP7 No. 608352). This article is built upon existing and published research; the empirical study has been presented at Mensch & Computer conference (Reuter & Ritzkatis, 2014), in some parts the concept enhances, refocuses and improves a paper presented at the 2015 international symposium on EUD (Reuter et al., 2015).


  1. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G. (2008). Finding high-quality content in social media. In Proceedings of the 2008 international conference on web search and data mining (pp. 183–194). Palo Alto: ACM Press. doi: 10.1145/1341531.1341557.Google Scholar
  2. Ardito, C., Costabile, M. F., Desolda, G., Lanzilotti, R., Matera, M., Picozzi, M. (2014). Visual composition of data sources by end users. In Proceedings of the 2014 international working conference on advanced visual interfaces - AVI ’14 (pp. 257–260). New York: ACM Press. doi: 10.1145/2598153.2598201.Google Scholar
  3. Bassett, C. (2015). Plenty as a response to austerity? Big data expertise, cultures and communities. European Journal of Cultural Studies, 18(4–5), 548–563. doi: 10.1177/1367549415577394.CrossRefGoogle Scholar
  4. Batrinca, B., & Treleaven, P. C. (2014). Social media analytics: a survey of techniques, tools and platforms. AI & Society, 30(1), 89–116. doi: 10.1007/s00146-014-0549-4.CrossRefGoogle Scholar
  5. Bello-Orgaz, G., Jung, J. J., Camacho, D. (2016). Social big data: recent achievements and new challenges. Information Fusion, 28, 45–59. doi: 10.1016/j.inffus.2015.08.005.CrossRefGoogle Scholar
  6. Borges, C. R., & Macías, J. A. (2010). Feasible database querying using a visual end-user approach. In Proceedings of the 2nd ACM SIGCHI symposium on engineering interactive computing systems - EICS ’10 (pp. 187–192). New York: ACM Press. doi: 10.1145/1822018.1822047.CrossRefGoogle Scholar
  7. Cappiello, C., Daniel, F., Matera, M., Picozzi, M., Weiss, M. (2011). Enabling end user development through mashups: requirements, abstractions and innovation toolkits. In M. F. Costabile, Y. Dittrich, G. Fischer, A. Piccinno (Eds.). Proceedings of the international symposium on end-user development (IS-EUD) (pp. 1–16). Torre Canne: Springer.Google Scholar
  8. Chowdhury, S., Amer-Yahia, S., Castillo, C., Imran, M., Asghar, M. R. (2013). Tweet4act: using incident-specific profiles for classifying crisisrelated messages. In T. Comes, F. Fiedrich, S. Fortier, J. Geldermann, T. Müller (Eds.). Proceedings of the information systems for crisis response and management (ISCRAM) (pp. 834–839). Baden-Baden, Germany: ISCRAM Digital Library.Google Scholar
  9. Church, K., & Oliver, N. (2011). Understanding mobile web and mobile search use in today’s dynamic mobile landscape. In Proceedings of the 13th international conference on human computer interaction with mobile devices and services (pp. 67–76). Stockholm: ACM.Google Scholar
  10. Costabile, M. F., Fogli, D., Mussio, P., Piccinno, A. (2007). Visual interactive systems for end-user development: a model-based design methodology. IEEE transactions on systems, man, and cybernetics - part a: systems and humans, 37(6), 1029–1046. doi: 10.1109/TSMCA.2007.904776.CrossRefGoogle Scholar
  11. Coutaz, J., & Crowley, J. L. (2016). A first-person experience with end-user development for smart homes. IEEE Pervasive Computing, 15(2), 26–39. doi: 10.1109/MPRV.2016.24.CrossRefGoogle Scholar
  12. Dijcks, J. (2012). Oracle: Big data for the enterprise. Oracle white paper, (June), 1–14.Google Scholar
  13. Doerner, C., Draxler, S., Pipek, V., Wulf, V. (2009). End users at the bazaar: designing next-generation enterprise-resource-planning systems. IEEE Software, 26(5), 45–51.CrossRefGoogle Scholar
  14. Doll, W. J., & Torkzadeh, G. (1988). The measurement of end-user computing satisfaction. MIS Quarterly, 12(2), 259. doi: 10.2307/248851.CrossRefGoogle Scholar
  15. Eisenstein, J. (2013). What to do about bad language on the internet. In L. Vanderwende (Ed.). Proceedings of NAACL-HLT 2013 (pp. 359–369). Atlanta: The Association for Computational Linguistics.Google Scholar
  16. Endsley, M. R. M. R. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors: The Journal of the Human Factors and Ergonomics Society, 37(1), 32–64. doi: 10.1518/001872095779049543.CrossRefGoogle Scholar
  17. Fischer, G., & Scharff, E. (2000). Meta-design – Design for designers. In D. Boyarski, W. Kellogg (Eds.). Proceedings of the international conference on designing interactive systems (pp. 396–405). New York: ACM.Google Scholar
  18. Friberg, T., Prödel, S., Koch, R. (2010). Analysis of information quality criteria in crisis situation as a characteristic of complex situations. In M. Lacity, S. March, F. Niederman (Eds.). Proceedings of the 15th international conference on information quality. Little Rock: AIS Electronic Library (AISeL).Google Scholar
  19. Ganis, M., & Kohirkar, A. (2012). Ensuring the accuracy of your social media analysis. Cutter IT Journal, 25(10), 13–18.Google Scholar
  20. Gantt, M., & Nardi, B. (1992). Gardeners and gurus: patterns of cooperation among CAD users. In P. Bauersfeld, J. Bennett, G. Lynch (Eds.). Proceedings of the conference on human factors in computing systems (CHI) (pp. 107–117). Monterey: ACM Press. doi: 10.1145/142750.142767.Google Scholar
  21. Giles, J. (2005). Internet encyclopaedias go head to head. Nature, 438(December), 900–901. doi: 10.1038/438900a.CrossRefGoogle Scholar
  22. Grammel, L. (2009). Supporting end users in analyzing multiple data sources. In R. DeLine, M. Minas, M. Erwig (Eds.). 2009 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 246–247). Corvallis: IEEE. doi: 10.1109/VLHCC.2009.5295248.CrossRefGoogle Scholar
  23. Heer, J., & Boyd, D. (2005). Vizster: visualizing online social networks. In M. Ward, J. Stasko (Eds.). IEEE symposium on information visualization, 2005. INFOVIS 2005 (pp. 32–39). Minneapolis: IEEE. doi: 10.1109/INFVIS.2005.1532126.CrossRefGoogle Scholar
  24. Henderson, A., & Kyng, M. (1991). There’s no place like home: continuing design in use. In J. Greenbaum & M. Kyng (Eds.), Design at work cooperative design of computer systems (pp. 219–240). Lawrence Erlbaum Associates.Google Scholar
  25. Hess, J., Reuter, C., Pipek, V., Wulf, V. (2012). Supporting end-user articulations in evolving business processes: a case study to explore intuitive notations and interaction designs. International Journal of Cooperative Information Systems (IJCIS), 21(4), 263–296.CrossRefGoogle Scholar
  26. Hiltz, S., & Plotnick, L. (2013). Dealing with information overload when using social media for emergency management: emerging solutions. In T. Comes, F. Fiedrich, S. Fortier, J. Geldermann, T. Müller (Eds.). Proceedings of the information systems for crisis response and management (ISCRAM) (pp. 823–827). Baden-Baden, Germany: ISCRAM Digital Library.Google Scholar
  27. Kaisler, S., Armour, F., Espinosa, J. A., Money, W. (2013). Big data: issues and challenges moving forward. In R. H. Sprague (Ed.). 2013 46th hawaii international conference on system sciences (pp. 995–1004). Wailea: IEEE. doi: 10.1109/HICSS.2013.645.CrossRefGoogle Scholar
  28. Kaufhold, M.-A., & Reuter, C. (2016). The self-organization of digital volunteers across social media: the case of the 2013 european floods in germany. Journal of Homeland Security and Emergency Management (HSEM), 13(1), 137–166.Google Scholar
  29. Ley, B., Pipek, V., Reuter, C., Wiedenhoefer, T. (2012). Supporting improvisation work in inter-organizational crisis management. In Proceedings of the conference on human factors in computing systems (CHI) (pp. 1529–1538). Austin, TX: ACM Press.Google Scholar
  30. Lieberman, H., Paterno, F., Wulf, V. (2006). End-user development. Dordrecht: Springer. doi: 10.1007/1-4020-5386-X.CrossRefGoogle Scholar
  31. Ludwig, T., Reuter, C., Pipek, V. (2013). What you see is what I need: mobile reporting practices in emergencies. In O. W. Bertelsen, L. Ciolfi, A. Grasso, G. A. Papadopoulos (Eds.). Proceedings of the European conference on computer supported cooperative work (ECSCW) (pp. 181–206). Paphos: Springer. Retrieved from Scholar
  32. Ludwig, T., Reuter, C., Pipek, V. (2015). Social haystack: dynamic quality assessment of citizen-generated content during emergencies. Transactions on human computer interaction (ToCHI), 22(4), 17:1–17:27. doi: 10.1145/2749461.
  33. MacLean, A., Carter, K., Lövstrand, L., Moran, L. (1990). User-tailorable systems: pressing the issues with buttons. In J. C. Chew, J. Whiteside (Eds.). Proceedings of the conference on human factors in computing systems (CHI). Seattle: ACM Press.Google Scholar
  34. Marcus, A., Bernstein, M., Badar, O., Karger, D. R., Madden, S., Miller, R. C. (2011). Twitinfo: aggregating and visualizing microblogs for event exploration. In D. Tan, G. Fitzpatrick, C. Gutwin, B. Begole, W. A. Kellogg (Eds.). Proceedings of the conference on human factors in computing systems (CHI) (pp. 227–236). Vancouver, Canada: ACM Press.Google Scholar
  35. Massa, D., & Spano, L. D. (2015). FaceMashup: enabling end user development on social networks data BT. In P. Díaz, V. Pipek, C. Ardito, C. Jensen, I. Aedo, A. Boden (Eds.). 5th international symposium on end-user development (IS-EUD) (pp. 204–210). Cham: Springer International Publishing. doi: 10.1007/978-3-319-18425-8_17.CrossRefGoogle Scholar
  36. McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 61–67.Google Scholar
  37. McClendon, S., & Robinson, A. C. (2012). Leveraging geospatially-oriented social media communications in disaster response. In L. Rothkrantz, J. Ristvej, Z. Franco (Eds.). Proceedings of the information systems for crisis response and management (ISCRAM) (pp. 1–11). Vancouver, Canada: ISCRAM Digital Library.Google Scholar
  38. Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., Bhattacharjee, B. (2007). Measurement and analysis of online social networks. In C. Dovrolis, M. Roughan (Eds.). Proceedings of the internet measurement conference (pp. 29–42). San Diego: ACM Press.Google Scholar
  39. Nielsen, J. (1993). Usability engineering. San Francisco, CA: Morgan Kaufmann.zbMATHGoogle Scholar
  40. Olshannikova, E., Olsson, T., Huhtamäki, J., Kärkkäinen, H. (2017). Conceptualizing big social data. Journal of Big Data, 4(1), 1–19. doi: 10.1186/s40537-017-0063-x.CrossRefGoogle Scholar
  41. Organisation for Economic Co-operation and Development (OECD). (2007). Participative web: user-created content.
  42. Pipek, V. (2005). From tailoring to appropriation support: negotiating groupware usage (PhD-Thesis) (Faculty of Science - Department of Information Processing Science - University of Oulu, Ed.). Oulu: Oulu University Press.Google Scholar
  43. Pipek, V., & Wulf, V. (2009). Infrastructuring: toward an integrated perspective on the design and use of information technology. Journal of the Association for Information Systems (JAIS), 10(5), 447–473.Google Scholar
  44. Reuter, C., & Kaufhold, M.-A. (2018). Fifteen years of social media in emergencies: a retrospective review and future directions for crisis informatics. Journal of contingencies and crisis management (JCCM), 26(1).Google Scholar
  45. Reuter, C., Heger, O., Pipek, V. (2013). Combining real and virtual volunteers through social media. In T. Comes, F. Fiedrich, S. Fortier, J. Geldermann, T. Müller (Eds.). Proceedings of the information systems for crisis response and management (ISCRAM) (pp. 1–10). Baden-Baden: ISCRAM Digital Library.Google Scholar
  46. Reuter, C., Ludwig, T., Kaufhold, M.-A., Pipek, V. (2015). XHELP: design of a cross-platform social-media application to support volunteer moderators in disasters. In B. Begole, J. Kim, K. Inkpen, W. Woo (Eds.). Proceedings of the conference on human factors in computing systems (CHI) (pp. 4093–4102). Seoul: ACM Press.Google Scholar
  47. Reuter, C., Ludwig, T., Kotthaus, C., Kaufhold, M.-A., von Radziewski, E., Pipek, V. (2016). Big data in a crisis? Creating social media datasets for emergency management research. I-Com: Journal of Interactive Media, 15(3), 249–264. doi: 10.1515/icom-2016-0036.CrossRefGoogle Scholar
  48. Reuter, C., Ludwig, T., Ritzkatis, M., Pipek, V. (2015). Social-QAS: tailorable quality assessment service for social media content. In P. Díaz, V. Pipek, C. Ardito, C. Jensen, I. Aedo, A. Boden (Eds.). Proceedings of the international symposium on end-user development (IS-EUD) (pp. 156–170). Madrid: Lecture Notes in Computer Science.Google Scholar
  49. Reuter, C., & Ritzkatis, M. (2014). Adaptierbare Bewertung bürgergenerierter Inhalte aus sozialen Medien. In M. Koch, A. Butz, J. Schlichter (Eds.). Mensch & computer: interaktiv unterwegs – Freiräume gestalten (pp. 115–124). München: Oldenbourg-Verlag.Google Scholar
  50. Reuter, C., & Scholl, S. (2014). Technical limitations for designing applications for social media. In M. Koch, A. Butz, J. Schlichter (Eds.). Mensch & computer: workshopband (pp. 131–140). München: Oldenbourg-Verlag.Google Scholar
  51. Rieder, B. (2013). Studying facebook via data extraction: the netvizz application. Proceedings of the 5th annual ACM web science conference (pp. 346–355). New York: ACM. doi: 10.1145/2464464.2464475.CrossRefGoogle Scholar
  52. Ritter, A., Clark, S., Mausam, Etzioni, O. (2011). Named entity recognition in tweets: an experimental study. In P. Merlo, R. Barzilay, M. Johnson (Eds.). EMNLP ’11 Proceedings of the conference on empirical methods in natural language processing (pp. 1524–1534). Edinburgh: Association for Computational Linguistics.Google Scholar
  53. Rizza, C., Pereira, Â., Curvelo, P. (2013). Do-it-yourself justice-considerations of social media use in a crisis situation: the case of the 2011 vancouver riots. In T. Comes, F. Fiedrich, S. Fortier, J. Geldermann, T. Müller (Eds.). Proceedings of the information systems for crisis response and management (ISCRAM) (pp. 411–415). Baden-Baden: ISCRAM Digital Library.Google Scholar
  54. Stevens, G., Pipek, V., Wulf, V. (2009). Appropriation infrastructure: supporting the design of usages. In V. Pipek, M. B. Rosson, V. Wulf (Eds.). Proceedings of the second international symposium on end-user development (IS-EUD) (pp. 50–69). Heidelberg: Springer, LNCS.Google Scholar
  55. Stieglitz, S., Dang-Xuan, L., Bruns, A., Neuberger, C. (2014). Social media analytics. Wirtschaftsinformatik, 56(2), 101–109.CrossRefGoogle Scholar
  56. Terpstra, T., Vries, A., de, Stronkman, R., Paradies, G. L. (2012). Towards a realtime twitter analysis during crises for operational crisis management. In L. Rothkrantz, J. Ristvej, Z. Franco (Eds.). Proceedings of the information systems for crisis response and management (ISCRAM) (pp. 1–9). Vancouver: ISCRAM Digital Library.Google Scholar
  57. Thomson, R., Ito, N., Suda, H., Lin, F. (2012). Trusting tweets: the fukushima disaster and information source credibility on twitter. In L. Rothkrantz, J. Ristvej, Z. Franco (Eds.). Proceedings of the information systems for crisis response and management (ISCRAM) (pp. 1–10). Vancouver: ISCRAM Digital Library.Google Scholar
  58. Turoff, M., Chumer, M., van de Walle, B., Yao, X. (2004). The design of a dynamic emergency response management information system (DERMIS). The Journal of Information Technology Theory and Application (JITTA), 5(4), 1–35. Retrieved from Scholar
  59. Twidale, M., Randall, D., Bentley, R. (1994). Situated evaluation for cooperative systems situated evaluation for cooperative systems. Lancester.Google Scholar
  60. van de Walle, B., & Turoff, M. (2008). Decision support for emergency situations. Information Systems and E-Business Management, 6(3), 295–316. doi: 10.1007/s10257-008-0087-z.CrossRefGoogle Scholar
  61. Ward, J.S., & Barker, A. (2013). Undefined by data: a survey of big data definitions. Computing Research Repository, abs/1309.5.Google Scholar
  62. Watson, H., Finn, R. L., Wadhwa, K. (2017). Organizational and societal impacts of big data in crisis management. Journal of contingencies and crisis management (JCCM), 25(1), 15–22. doi: 10.1111/1468-5973.12141.CrossRefGoogle Scholar
  63. Won, M., Stiemerling, O., Wulf, V. (2006). Component-based approaches to tailorable systems. In H. Lieberman, F. Paternó, V. Wulf (Eds.). Enduser development (pp. 115–141). Dordrecht: Springer.Google Scholar
  64. Wong, J., & Hong, J. I. (2007). Making mashups with marmite. In Proceedings of the SIGCHI conference on human factors in computing systems - CHI ’07 (pp. 1435–1444). New York: ACM Press. doi: 10.1145/1240624.1240842.CrossRefGoogle Scholar
  65. World Wide Web Consortium. (2017). Activity vocabulary. Retrieved July 3, 2016, from
  66. Wulf, V., Müller, C., Pipek, V., Randall, D., Rohde, M. (2015). Practice based computing: empirically-grounded concpetualizations derived from design cases studies. In V. Wulf, K. Schmidt, D. Randall (Eds.). Designing socially embedded technologies in the real-world. London: Springer.CrossRefGoogle Scholar
  67. Wulf, V., Rohde, M., Pipek, V., Stevens, G. (2011). Engaging with practices: design case studies as a research framework in CSCW. In Proceedings of the conference on computer supported cooperative work (CSCW) (pp. 505–512). Hangzhou: ACM Press.Google Scholar
  68. Xu, W., Ritter, A., Grishman, R. (2013). Gathering and generating paraphrases from twitter with application to normalization. In Proceedings of the sixth workshop on building and using comparable corpora (pp. 121–128). Sophia: Association for Computational Linguistics.Google Scholar
  69. Zafarani, R., Abbasi, M. A., Liu, H. (2014). Social media mining: an introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  70. Zagel, B. (2012). Soziale Netzwerke als Impulsgeber für das Verkehrs-und Sicherheits management bei Großveranstaltungen. In A. Koch, T. Kutzner, T. Eder (Eds.). Geoinformationssysteme (pp. 223–232). Berlin/Offenbach: VDE Verlag GMBH.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christian Reuter
    • 1
    Email author
  • Marc-André Kaufhold
    • 1
  • Thomas Ludwig
    • 1
  1. 1.University of SiegenSiegenGermany

Personalised recommendations