Maternal Nutrition and Cognition

  • Rachael M. TaylorEmail author
  • Roger Smith
  • Clare E. Collins
  • Alexis J. Hure
Part of the Nutrition and Health book series (NH)


Adequate nutrition during early life is essential to support the neurological processes that underlie human brain development and cognition. Children who fail to meet their cognitive potential achieve fewer schooling years and are at an increased risk of adult delinquency. Maximising child cognition through nutrition interventions hold major socioeconomic consequences for individuals and societies. Recent studies suggest that brain development and cognition can be modified by nutrient and gene interactions, a process called epigenetics. DNA methylation is an epigenetic mechanism that requires dietary nutrients to donate methyl groups to DNA nucleotides and modify the regulation of gene expression. Recent studies have demonstrated that epigenetic modifications mediated by DNA methylation can disrupt cell signalling molecules and increase neurotoxins in the brain which may affect cognitive function. Future research in this area is warranted to determine the critical role of early life nutrition on long-term brain future and inform dietary guidelines for pregnant women.


Child Brain Cognition Development DNA methylation Epigenetics Infant Nutrition Pregnancy Supplement 









Adenosine triphosphate


Base excision repair


Choline transporter




Dihydrofolate reductase


Diffusion tensor imaging




DNA methyltransferase




Histone deacetylase complexes


High methionine


High methionine/low folate


Intracisternal A-type particle


Insulin-like growth factor-2




Low folate


Methyl-CpG-binding proteins




Magnetic resonance imaging


Millimoles per litre




Methyltetrahydrofolate reductase






Single nucleotide polymorphisms






  1. 1.
    Fagiolini M, Jensen CL, Champagne FA. Epigenetic influences on brain development and plasticity. Curr Opin Neurobiol. 2009;19(2):207–12. PubMed PMID: 19545993. Pubmed Central PMCID: PMC2745597. Epub 2009/06/24. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bryan J, Osendarp S, Hughes D, Calvaresi E, Baghurst K, van Klinken JW. Nutrients for cognitive development in school-aged children. Nutr Rev. 2004;62(8):295–306. PubMed PMID: WOS:000227435000001. English.PubMedCrossRefGoogle Scholar
  3. 3.
    Toga AW, Thompson PM, Sowell ER. Mapping brain maturation. Trends Neurosci. 2006;29(3):148–59.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):861. PubMed PMID: 8829982.CrossRefGoogle Scholar
  5. 5.
    Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341(6146):1237905. PubMed PMID: 23828890. Pubmed Central PMCID: PMC3785061. Epub 2013/07/06. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007;369(9555):60–70. PubMed PMID: 17208643. Pubmed Central PMCID: PMC2270351. Epub 2007/01/09. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Psacharopoulos G, Patrinos HA. Returns to investment in education: a further update. Educ Econ. 2004;12(2):111–34.CrossRefGoogle Scholar
  8. 8.
    Farrington DP. Early predictors of adolescent aggression and adult violence. Violence Vict. 1989;4(2):79–100. PubMed PMID: 2487131. Epub 1989/01/01. eng.PubMedGoogle Scholar
  9. 9.
    Kaslow FW, Lipsitt PD, Buka SL, Lipsitt LP. Family law issues in family therapy practice: early intelligence scores and subsequent delinquency: a prospective study. Am J Fam Ther. 1990;18(2):197–208.CrossRefGoogle Scholar
  10. 10.
    Fergusson DM, Horwood LJ, Ridder EM. Show me the child at seven II: childhood intelligence and later outcomes in adolescence and young adulthood. J Child Psychol Psychiatry. 2005;46(8):850–8. PubMed PMID: 16033633. Epub 2005/07/22. eng.PubMedCrossRefGoogle Scholar
  11. 11.
    Stattin H, Klackenberg-Larsson I. Early language and intelligence development and their relationship to future criminal behavior. J Abnorm Psychol. 1993;102(3):369–78. PubMed PMID: 8408948. Epub 1993/08/01. eng.PubMedCrossRefGoogle Scholar
  12. 12.
    Frisell T, Pawitan Y, Långström N. Is the association between general cognitive ability and violent crime caused by family-level confounders? PLoS One. 2012;7(7):e41783.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Johnson MH. Developmental cognitive neuroscience. 3rd ed. Hoboken: Wiley-Blackwell; 2010.Google Scholar
  14. 14.
    Casey BJ, Giedd JN, Thomas KM. Structural and functional brain development and its relation to cognitive development. Biol Psychol. 2000;54(1–3):241–57. PubMed PMID: 11035225. Epub 2000/10/18. eng.PubMedCrossRefGoogle Scholar
  15. 15.
    Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24(4):417–63. PubMed PMID: 10817843. Epub 2000/05/19. eng.PubMedCrossRefGoogle Scholar
  16. 16.
    Sowell ER, Delis D, Stiles J, Jernigan TL. Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study. J Int Neuropsychol Soc: JINS. 2001;7(3):312–22. PubMed PMID: 11311032. Epub 2001/04/20. eng.PubMedCrossRefGoogle Scholar
  17. 17.
    Linderkamp O, Ludwig J, Rupert L, Dagmar BS. Time table of normal foetal brain development. Int J Prenat Perinatal Psychol Med. 2009;21:4–16.Google Scholar
  18. 18.
    Bhatnagar S, Taneja S. Zinc and cognitive development. Br J Nutr. 2001;85(SUPPL. 2):S139–S45. PubMed PMID: 2001227169. English.PubMedCrossRefGoogle Scholar
  19. 19.
    Goldman-Rakic PS. Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. Comprehensive physiology. Maryland, United States: Wiley; 2011.Google Scholar
  20. 20.
    Diamond A. Abilities and neural mechanisms underlying AB̄ performance. Child Dev. 1988;59(2):523–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Dempster FN. The rise and fall of the inhibitory mechanism: toward a unified theory of cognitive development and aging. Dev Rev. 1992;12(1):45–75.CrossRefGoogle Scholar
  22. 22.
    Miller EK, Cohen JD. An integrative theory of prefrontal function. Annu Rev Neurosci. 2001;24(1):167–202.PubMedCrossRefGoogle Scholar
  23. 23.
    Luria AR. Higher cognitive functions. New York: ManBasic Books; 1966.Google Scholar
  24. 24.
    Goldman-Rakic PS. Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci. 1988;11:137–56. PubMed PMID: 3284439. Epub 1988/01/01. eng.PubMedCrossRefGoogle Scholar
  25. 25.
    Luna B, Thulborn KR, Munoz DP, Merriam EP, Garver KE, Minshew NJ, et al. Maturation of widely distributed brain function subserves cognitive development. NeuroImage. 2001;13(5):786–93. PubMed PMID: 11304075. Epub 2001/04/17. eng.PubMedCrossRefGoogle Scholar
  26. 26.
    McNamara RK, Vannest JJ, Valentine CJ. Role of perinatal long-chain omega-3 fatty acids in cortical circuit maturation: mechanisms and implications for psychopathology. World J Psychiatr. 2015;5(1):15–34.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Nagy Z, Westerberg H, Klingberg T. Maturation of white matter is associated with the development of cognitive functions during childhood. J Cogn Neurosci. 2004;16(7):1227–33. PubMed PMID: 15453975. Epub 2004/09/30. eng.PubMedCrossRefGoogle Scholar
  28. 28.
    Liston C, Watts R, Tottenham N, Davidson MC, Niogi S, Ulug A, et al. Developmental differences in diffusion measures of cortical fiber tracts. J Cogn Neurosci. 2003;15:S57–S8.Google Scholar
  29. 29.
    Tau GZ, Peterson BS. Normal development of brain circuits. Neuropsychopharmacology. 2010;35(1):147–68. PubMed PMID: 19794405. Pubmed Central PMCID: PMC3055433. Epub 2009/10/02. eng.PubMedCrossRefGoogle Scholar
  30. 30.
    Deary IJ, Johnson W, Houlihan LM. Genetic foundations of human intelligence. Hum Genet. 2009;126(1):215–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Lawlor DA, Batty GD, Morton SM, Deary IJ, Macintyre S, Ronalds G, et al. Early life predictors of childhood intelligence: evidence from the Aberdeen children of the 1950s study. J Epidemiol Community Health. 2005;59(8):656–63. PubMed PMID: 16020642. Pubmed Central PMCID: PMC1733112. Epub 2005/07/16. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Stabler B, Clopper RR, Siegel PT, Stoppani C, Compton PG, Underwood LE. Academic achievement and psychological adjustment in short children. The National Cooperative Growth Study. J Dev Behav Pediatr: JDBP. 1994;15(1):1–6. PubMed PMID: 8195431. Epub 1994/02/01. eng.PubMedCrossRefGoogle Scholar
  33. 33.
    Stathis SL, O’Callaghan MJ, Williams GM, Najman JM, Andersen MJ, Bor W. Behavioural and cognitive associations of short stature at 5 years. J Paediatr Child Health. 1999;35(6):562–7. PubMed PMID: 10634984. Epub 2000/01/15. eng.PubMedCrossRefGoogle Scholar
  34. 34.
    Tong S, Baghurst P, Vimpani G, McMichael A. Socioeconomic position, maternal IQ, home environment, and cognitive development. J Pediatr. 2007;151(3):284–8. 8 e1. PubMed PMID: 17719939. Epub 2007/08/28. eng.PubMedCrossRefGoogle Scholar
  35. 35.
    Bacharach VR, Baumeister AA. Direct and indirect effects of maternal intelligence, maternal age, income, and home environment on intelligence of preterm, low-birth-weight children. J Appl Dev Psychol. 1998;19(3):361–75.CrossRefGoogle Scholar
  36. 36.
    Bourre JM. Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. J Nutr Health Aging. 2006;10(5):377–85. PubMed PMID: 17066209. Epub 2006/10/27. eng.PubMedGoogle Scholar
  37. 37.
    Widdowson EM, Dickerson JWT. The effect of growth and function on the chemical composition of soft tissues. Biochem J. 1960;77(1):30–43. PubMed PMID: PMC1204895.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Turner AJ. In: McIlwain H, Bachelard HS, editors. Biochemistry and the central nervous system. 5th ed. Edinburgh: Churchill Livingstone; 1985. p. 660. £40 ISBN 0-443-01961-4. Biochemical Education. 1986;14(1):46.Google Scholar
  39. 39.
    Nyaradi A, Jiang Hong L, Hickling S, Foster J, Oddy WH. The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front Hum Neurosci. 2013;7:97.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Qureshi IA, Mehler MF. Epigenetic mechanisms governing the process of neurodegeneration. Mol Asp Med. 2013;34(4):875–82.CrossRefGoogle Scholar
  41. 41.
    Dauncey MJ, White P, Burton KA, Katsumata M. Nutrition-hormone receptor-gene interactions: implications for development and disease. Proc Nutr Soc. 2001;60(1):63–72. PubMed PMID: 11310425. Epub 2001/04/20. eng.PubMedCrossRefGoogle Scholar
  42. 42.
    Dauncey M. Genomic and epigenomic insights into nutrition and brain disorders. Forum Nutr. 2013;5(3):887. PubMed PMID: doi:10.3390/nu5030887.Google Scholar
  43. 43.
    Georgieff MK, Brunette KE, Tran PV. Early life nutrition and neural plasticity. Dev Psychopathol. 2015;27(Special Issue 02):411–23.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Burdgea GC, Hoilea SP, Lillycropb KA. Epigenetics: are there implications for personalised nutrition. Curr Opin Clin Nutr Metab Care. 2012;15(5):442–7.CrossRefGoogle Scholar
  45. 45.
    Tibbetts AS, Appling DR. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr. 2010;30:57–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Zeisel SH. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr. 2009;89(5):1488S–93S. PubMed PMID: PMC2677001.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Stipanuk MH. Sulfur amino acid metabolism pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. 2004;24:539–77.PubMedCrossRefGoogle Scholar
  48. 48.
    Refsum H, Grindflek AW, Ueland PM, Fredriksen Å, Meyer K, Ulvik A, et al. Screening for serum total homocysteine in newborn children. Clin Chem. 2004;50(10):1769–84.PubMedCrossRefGoogle Scholar
  49. 49.
    Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76. PubMed PMID: 18463664. Epub 2008/05/09. eng.PubMedCrossRefGoogle Scholar
  50. 50.
    Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem: Eur J Chem Biol. 2002;3(4):274–93. PubMed PMID: 11933228. Epub 2002/04/05. eng.CrossRefGoogle Scholar
  51. 51.
    Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321(6067):209–13. PubMed PMID: 2423876. Epub 1986/05/15. eng.PubMedCrossRefGoogle Scholar
  52. 52.
    Crider KS, Yang TP, Berry RJ, Bailey LB. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr (Bethesda, Md). 2012;3(1):21–38. PubMed PMID: 22332098. Pubmed Central PMCID: PMC3262611. Epub 2012/02/15. eng.CrossRefGoogle Scholar
  53. 53.
    Dhasarathy A, Wade PA. The MBD protein family-reading an epigenetic mark? Mutat Res. 2008;647(1–2):39–43. PubMed PMID: 18692077. Pubmed Central PMCID: PMC2670759. Epub 2008/08/12. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386–9. PubMed PMID: 9620804. Epub 1998/06/10. eng.PubMedCrossRefGoogle Scholar
  55. 55.
    Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol. 2009;5(7):401–8. PubMed PMID: 19488075. Epub 2009/06/03. eng.PubMedCrossRefGoogle Scholar
  56. 56.
    Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3(9):662–73.PubMedCrossRefGoogle Scholar
  57. 57.
    Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 1998;12(11):949–57.PubMedGoogle Scholar
  58. 58.
    Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–300. PubMed PMID: 12861015. Pubmed Central PMCID: PMC165709. Epub 2003/07/16. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23(3):314–8. PubMed PMID: 10545949. Epub 1999/11/05. eng.PubMedCrossRefGoogle Scholar
  60. 60.
    Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132(8 Suppl):2393S–400S. PubMed PMID: 12163699. Epub 2002/08/07. eng.PubMedGoogle Scholar
  61. 61.
    Wolff GL, Roberts DW, Galbraith DB. Prenatal determination of obesity, tumor susceptibility, and coat color pattern in viable yellow (Avy/a) mice. The yellow mouse syndrome. J Hered. 1986;77(3):151–8. PubMed PMID: 3734404. Epub 1986/05/01. eng.PubMedCrossRefGoogle Scholar
  62. 62.
    Wolff GL, Roberts DW, Mountjoy KG. Physiological consequences of ectopic agouti gene expression: the yellow obese mouse syndrome. Physiol Genomics. 1999;1(3):151–63. PubMed PMID: 11015573. Epub 2000/10/04. eng.PubMedGoogle Scholar
  63. 63.
    Cropley JE, Dang TH, Martin DI, Suter CM. The penetrance of an epigenetic trait in mice is progressively yet reversibly increased by selection and environment. Proc Biol Sci/Royal Soc. 2012;279(1737):2347–53. PubMed PMID: 22319121. Pubmed Central PMCID: PMC3350677. Epub 2012/02/10. eng.CrossRefGoogle Scholar
  64. 64.
    Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M, et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 2010;6(12):e1001252. PubMed PMID: 21203497. Pubmed Central PMCID: PMC3009670. Epub 2011/01/05. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Gallagher EA, Newman JP, Green LR, Hanson MA. The effect of low protein diet in pregnancy on the development of brain metabolism in rat offspring. J Physiol. 2005;568(Pt 2):553–8. PubMed PMID: 16081486. Pubmed Central PMCID: PMC1474740. Epub 2005/08/06. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rubia K, Lee F, Cleare AJ, Tunstall N, Fu CH, Brammer M, et al. Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI. Psychopharmacology. 2005;179(4):791–803. PubMed PMID: 15887056. Epub 2005/05/12. eng.PubMedCrossRefGoogle Scholar
  67. 67.
    Liu J, Zhao S, Reyes T. Neurological and epigenetic implications of nutritional deficiencies on psychopathology: conceptualization and review of evidence. Int J Mol Sci. 2015;16(8):18129. PubMed PMID: doi:10.3390/ijms160818129.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wald N, Sneddon J. Prevention of neural tube defects: results of the Medical Research Council vitamin study. Lancet. 1991;338(8760):131. PubMed PMID: 9108192209.CrossRefGoogle Scholar
  69. 69.
    WHO. Guideline: daily iron and folic acid supplementation in pregnant women. Geneva: World Health Organization; 2012.Google Scholar
  70. 70.
    Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory JF, Mills JL, et al. Biomarkers of nutrition for development—folate review. J Nutr. 2015;3:2015.Google Scholar
  71. 71.
    Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, et al. Periconceptional maternal folic acid use of 400 μg per day is related to increased methylation of the <italic>IGF2</italic> gene in the very young child. PLoS One. 2009;4(11):e7845.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ba Y, Yu H, Liu F, Geng X, Zhu C, Zhu Q, et al. Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood. Eur J Clin Nutr. 2011;65(4):480–5. PubMed PMID: 21245875. Pubmed Central PMCID: PMC3071883. Epub 2011/01/20. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hoyo C, Murtha AP, Schildkraut JM, Jirtle RL, Demark-Wahnefried W, Forman MR, et al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy. Epigenetics. 2011;6(7):928–36. PubMed PMID: 21636975. Pubmed Central PMCID: PMC3154433. Epub 2011/06/04. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Nyberg F, Hallberg M. Growth hormone and cognitive function. Nat Rev Endocrinol. 2013;9(6):357–65.PubMedCrossRefGoogle Scholar
  75. 75.
    Duthie SJ, Narayanan S, Brand GM, Pirie L, Grant G. Impact of folate deficiency on DNA stability. J Nutr. 2002;132(8):2444S–9S.PubMedGoogle Scholar
  76. 76.
    Fang JY, Zhu SS, Xiao SD, Jiang SJ, Shi Y, Chen XY, et al. Studies on the hypomethylation of c-myc, c-Ha-ras oncogenes and histopathological changes in human gastric carcinoma. J Gastroenterol Hepatol. 1996;11(11):1079–82. PubMed PMID: 8985834. Epub 1996/11/01. eng.PubMedCrossRefGoogle Scholar
  77. 77.
    Beetstra S, Thomas P, Salisbury C, Turner J, Fenech M. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei. Mutat Res/Fundam Mol Mech Mutagen. 2005;578(1–2):317–26.CrossRefGoogle Scholar
  78. 78.
    SAS L, Achterfeldt S, Gorniak JP, KJA H-H, Oxley D, van Schooten FJ, et al. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring. FASEB J. 2013;27(8):3323–34.CrossRefGoogle Scholar
  79. 79.
    Langie SA, Achterfeldt S, Gorniak JP, Halley-Hogg KJ, Oxley D, van Schooten FJ, et al. Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring. FASEB J: Off Publ Fed Am Soc Exp Biol. 2013;27(8):3323–34. PubMed PMID: 23603834. Epub 2013/04/23. eng.CrossRefGoogle Scholar
  80. 80.
    Zeisel SH. Nutritional importance of choline for brain development. J Am Coll Nutr. 2004;23(6 Suppl):621S–6S. PubMed PMID: 15640516. Epub 2005/01/11. eng.PubMedCrossRefGoogle Scholar
  81. 81.
    Craciunescu CN, Albright CD, Mar MH, Song J, Zeisel SH. Choline availability during embryonic development alters progenitor cell mitosis in developing mouse hippocampus. J Nutr. 2003;133(11):3614–8. PubMed PMID: 14608083. Pubmed Central PMCID: PMC1592525. Epub 2003/11/11. eng.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Arnold H, Burk J, Hodgson E, Sarter M, Bruno J. Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience. 2002;114(2):451–60.PubMedCrossRefGoogle Scholar
  83. 83.
    Himmelheber AM, Sarter M, Bruno JP. Increases in cortical acetylcholine release during sustained attention performance in rats. Cogn Brain Res. 2000;9(3):313–25.CrossRefGoogle Scholar
  84. 84.
    Cermak JM, Holler T, Jackson DA, Blusztajn JK. Prenatal availability of choline modifies development of the hippocampal cholinergic system. FASEB J. 1998;12(3):349–57.PubMedGoogle Scholar
  85. 85.
    Holler T, Cermak JM, Blusztajn JK. Dietary choline supplementation in pregnant rats increases hippocampal phospholipase D activity of the offspring. FASEB J: Off Publ Fed Am Soc Exp Biol. 1996;10(14):1653–9. PubMed PMID: 9002559. Epub 1996/12/01. eng.Google Scholar
  86. 86.
    Mellott TJ, Kowall NW, Lopez-Coviella I, Blusztajn JK. Prenatal choline deficiency increases choline transporter expression in the septum and hippocampus during postnatal development and in adulthood in rats. Brain Res. 2007;1151:1–11. PubMed PMID: PMC1952662.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Napoli I, Blusztajn JK, Mellott TJ. Prenatal choline supplementation in rats increases the expression of IGF2 and its receptor IGF2R and enhances IGF2-induced acetylcholine release in hippocampus and frontal cortex. Brain Res. 2008;1237:124–35. PubMed PMID: 18786520. Epub 2008/09/13. eng.PubMedCrossRefGoogle Scholar
  88. 88.
    Hawkes C, Jhamandas JH, Harris KH, Fu W, MacDonald RG, Kar S. Single transmembrane domain insulin-like growth factor-II/mannose-6-phosphate receptor regulates central cholinergic function by activating a G-protein-sensitive, protein kinase C-dependent pathway. J Neurosci: Off J Soc Neurosci. 2006;26(2):585–96. PubMed PMID: 16407557. Epub 2006/01/13. eng.CrossRefGoogle Scholar
  89. 89.
    Li X, Sun Q, Li X, Cai D, Sui S, Jia Y, et al. Dietary betaine supplementation to gestational sows enhances hippocampal IGF2 expression in newborn piglets with modified DNA methylation of the differentially methylated regions. Eur J Nutr. 2015;54(7):1201–10. PubMed PMID: 25410747. Epub 2014/11/21. eng.PubMedCrossRefGoogle Scholar
  90. 90.
    Morris MS, Selhub J, Jacques PF. Vitamin B-12 and folate status in relation to decline in scores on the mini-mental state examination in the framingham heart study. J Am Geriatr Soc. 2012;60(8):1457–64. PubMed PMID: 22788704. Pubmed Central PMCID: PMC3419282. Epub 2012/07/14. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Min H. Effects of dietary supplementation of high-dose folic acid on biomarkers of methylating reaction in vitamin B(12)-deficient rats. Nutrition research and practice. 2009;3(2):122–7. PubMed PMID: 20016712. Pubmed Central PMCID: PMC2788180. Epub 2009/12/18. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Hirche F, Schroder A, Knoth B, Stangl GI, Eder K. Methionine-induced elevation of plasma homocysteine concentration is associated with an increase of plasma cholesterol in adult rats. Ann Nutr Metab. 2006;50(2):139–46. PubMed PMID: 16391469. Epub 2006/01/05. eng.PubMedCrossRefGoogle Scholar
  93. 93.
    Obeid R, Herrmann W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 2006;580(13):2994–3005.PubMedCrossRefGoogle Scholar
  94. 94.
    Sharma M, Tiwari M, Tiwari RK. Hyperhomocysteinemia: impact on neurodegenerative diseases. Basic Clin Pharmacol Toxicol. 2015;117(5):287–96.PubMedCrossRefGoogle Scholar
  95. 95.
    Kamat PK, Vacek JC, Kalani A, Tyagi N. Homocysteine induced cerebrovascular dysfunction: a link to Alzheimer’s disease etiology. Open Neurol J. 2015;9:9–14. PubMed PMID: PMC4485324.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Petras M, Tatarkova Z, Kovalska M, Mokra D, Dobrota D, Lehotsky J, et al. Hyperhomocysteinemia as a risk factor for the neuronal system disorders. J Physiol Pharmacol: Off J Polish Physiol Soc. 2014;65(1):15–23. PubMed PMID: 24622826. Epub 2014/03/14. eng.Google Scholar
  97. 97.
    Devlin AM, Arning E, Bottiglieri T, Faraci FM, Rozen R, Lentz SR. Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood. 2003;103(7):2624–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rachael M. Taylor
    • 1
    Email author
  • Roger Smith
    • 2
  • Clare E. Collins
    • 3
  • Alexis J. Hure
    • 4
  1. 1.Mothers and Babies Research Centre, University of NewcastleNewcastleAustralia
  2. 2.Department of EndocrinologyJohn Hunter Hospital, Mothers and Babies Research Centre, University of NewcastleNewcastleAustralia
  3. 3.Priority Research Centre for Physical Activity and NutritionUniversity of NewcastleNewcastleAustralia
  4. 4.Priority Research Centre for Gender, Health and AgeingUniversity of NewcastleNewcastleAustralia

Personalised recommendations