Multi-agent System for Privacy Protection Through User Emotions in Social Networks

  • G. AguadoEmail author
  • V. Julian
  • A. Garcia-Fornes
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 722)


In this research privacy and decision making in social networks are addressed through a multi-agent system, using a model of the temperament of users, taking into account their emotions through the messages they put on the social media and the visual information obtained from them. We use opinion mining from a social network and images from users to get the data and calculate a model of temperament based on the PAD model generated from images and in the polarity of the messages they write. For this reason we propose a method to calculate a temperament state based on the history of PAD values of the user and the history of text polarities. We use also a method that analyzes the sentiment expressed in a message and helps the user to make the decision of posting it or not.


Agents Multi-agent system Social networks Privacy Sentiment analysis Pleasure Arousal Dominance Advice Users 



This work was supported by the project TIN2014-55206-R of the Spanish government.


  1. 1.
    Vanderhoven, E., Schellens, T., Valcke, M.: Educating teens about the risks on social network sites. An intervention study in secondary education. Comunicar XXII(43), 123 (2014)CrossRefGoogle Scholar
  2. 2.
    Lewis, C.C.: How adolescents approach decisions: changes over grades seven to twelve and policy implications. Child Dev. 52(2), 538 (1981). CrossRefGoogle Scholar
  3. 3.
    Vanderhoven, E., Schellens, T., Vanderlinde, R., Valcke, M.: Developing educational materials about risks on social network sites: a design based research approach. Educ. Tech. Res. Dev. 64, 459–480 (2016)CrossRefGoogle Scholar
  4. 4.
    Christofides, E., Muise, A., Desmarais, S.: Disclosures on Facebook: the effect of having a bad experience on online behavior. J. Adolesc. Res. 27, 714–731 (2012)CrossRefGoogle Scholar
  5. 5.
    Mehrabian, A.: Outline of a general emotion-based theory of temperament. In: Strelau, J., Angleitner, A. (eds.) Explorations in Temperament: International Perspectives on Theory and Measurement, pp. 75–86. Plenum Press, New York (1991)CrossRefGoogle Scholar
  6. 6.
    Liu, B.: Sentiment Analysis and Opinion Mining, series Synthesis Lectures on Human Language Technologies, vol. 16. Morgan, San Mateo (2012)Google Scholar
  7. 7.
    Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89 (2013)CrossRefGoogle Scholar
  8. 8.
    Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. 28(3), 813–830 (2016)CrossRefGoogle Scholar
  9. 9.
    Hu, M., Liu, B.: Mining opinion features in customer reviews. In: Proceedings of the 19th National Conference on Artifical Intelligence, pp. 755–760 (2004)Google Scholar
  10. 10.
    Zhao, Y., Qin, B., Hu, S., Liu, T.: Generalizing syntactic structures for product attribute candidate extraction. In: Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 377–380 (2010)Google Scholar
  11. 11.
    Jakob, N., Gurevych, I.: Extracting opinion targets in a single and cross-domain setting with conditional random fields. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 1035–1045 (2010)Google Scholar
  12. 12.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  13. 13.
    Blair-Goldensohn, S., Neylon, T., Hannan, K., Reis, G.A., Mcdonald, R., Reynar, J.: Building a sentiment summarizer for local service reviews. In: Proceedings of Workshop NLP Information Explosion (2008)Google Scholar
  14. 14.
    Popescu, A.-M., Etzioni, O.: Extracting product features and opinions from reviews. In: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 339–346 (2005)Google Scholar
  15. 15.
    Nasukawa, T., Yi, J.: Sentiment analysis: capturing favorability using natural language processing. In: Proceedings of 2nd International Conference Knowledge Capture, pp. 70–77 (2003)Google Scholar
  16. 16.
    Li, F., Han, C., Huang, M., Zhu, X., Xia, Y.-J., Zhang, S., Yu, H.: Structure-aware review mining and summarization. In: Proceedings of 23rd International Conference on Computational Linguistics, pp. 653–661 (2010)Google Scholar
  17. 17.
    Zhao, W.X., Jiang, J., Yan, H., Li, X.: Jointly modeling aspects and opinions with a MaxEnt-LDA hybrid. In: Proceedings of Conference Empirical Methods Natural Language Processing, pp. 56–65 (2010)Google Scholar
  18. 18.
    Seroussi, Y., Zukerman, I., Bohnert, F.: Collaborative inference of sentiments from texts. In: Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 195–206. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13470-8_19 CrossRefGoogle Scholar
  19. 19.
    Tang, D., Qin, B., Liu, T.: Learning semantic representations of users and products for document level sentiment classification. In: Proceedings of 53rd Annual Meeting of the Association for Computational Linguistics (2015)Google Scholar
  20. 20.
    Tang, D., Qin, B., Liu, T., Yang, Y.: User modeling with neural network for review rating prediction. In: Proceedings of 24th International Joint Conference Artifical Intelligence, pp. 1340–1346 (2015)Google Scholar
  21. 21.
    Li, F., Liu, N., Jin, H., Zhao, K., Yang, Q., Zhu, X.: Incorporating reviewer and product information for review rating prediction. In: Proceedings of 22th International Joint Conference Artifical Intelligence, vol. 11, pp. 1820–1825 (2011)Google Scholar
  22. 22.
    Gao, W., Yoshinaga, N., Kaji, N., Kitsuregawa, M.: Modeling user leniency and product popularity for sentiment classification. In: Proceedings of IJCNLP, Nagoya, Japan (2013)Google Scholar
  23. 23.
    Diao, Q., Qiu, M., Wu, C.-Y., Smola, A.J., Jiang, J., Wang, C.: Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In: Proceedings of 20th ACM SIGKDD International Conference Knowledge Discovery and Data Mining, pp. 193–202 (2014)Google Scholar
  24. 24.
    Rincon, J.A., de la Prieta, F., Zanardini, D., Julian, V., Carrascosa, C.: Influencing over people with a social emotional model. In: International Conference on Practical Applications of Agents and Multiagent Systems (2016)Google Scholar
  25. 25.
    Xie, W., Kang, C.: See you, see me: teenagers self-disclosure and regret of posting on social network site. Comput. Hum. Behav. 52, 398–407 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departamento de Sistemas Informáticos y Computación (DSIC)Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations