Advertisement

A Multi-agent Architecture for Labeling Data and Generating Prediction Models in the Field of Social Services

  • Emilio Serrano
  • Pedro del Pozo-Jiménez
  • Mari Carmen Suárez-Figueroa
  • Jacinto González-Pachón
  • Javier BajoEmail author
  • Asunción Gómez-Pérez
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 722)

Abstract

Prediction models are widely used in insurance companies and health services. Even when 120 million people are at risk of suffering poverty or social exclusion in the EU, this kind of models are surprisingly unusual in the field of social services. A fundamental reason for this gap is the difficulty in labeling and annotating social services data. Conditions such as social exclusion require a case-by-case debate. This paper presents a multi-agent architecture that combines semantic web technologies, exploratory data analysis techniques, and supervised machine learning methods. The architecture offers a holistic view of the main challenges involved in labeling data and generating prediction models for social services. Moreover, the proposal discusses to what extent these tasks may be automated by intelligent agents.

Keywords

Multi-agent systems Human-agent societies Social services Machine learning 

Notes

Acknowledgments

This publication would not have been possible without the inputs and collaboration of the Social Services of Castilla y León. This research work is supported by the “Junta de Castilla y León” under the public contract: “Servicios de elaboración de modelos matemáticos para realizar segmentación poblacional” (A2016/000271); by the EU Programme for Employment and Social Innovation (EaSI) under the project PACT (“people-oriented case management for social inclusion proactive model”); and, by the Spanish Ministry of Economy, Industry and Competitiveness under the R&D project Datos 4.0: Retos y soluciones (TIN2016-78011-C4-4-R, AEI/FEDER, UE).

References

  1. 1.
    European Commission’s DG for Employment, Social Affairs & Inclusion. http://ec.europa.eu/social/main.jsp?catId=751. Accessed Feb 2017
  2. 2.
    Manulife Philippines. Calculate your risk, your partner’s risk or both. http://www.insureright.ca/what-is-your-risk. Accessed Feb 2017
  3. 3.
  4. 4.
    de Oliveira, L.: Fueling the Gold Rush: The Greatest Public Datasets for AI. https://goo.gl/mJO8nf. Accessed Feb 2017
  5. 5.
    Giannella, C., Bhargava, R., Kargupta, H.: Multi-agent systems and distributed data mining. In: Klusch, M., Ossowski, S., Kashyap, V., Unland, R. (eds.) CIA 2004. LNCS, vol. 3191, pp. 1–15. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30104-2_1 CrossRefGoogle Scholar
  6. 6.
    Haron, N.: On social exclusion and income poverty in israel: findings from the european social survey. In: Berenger, V., Bresson, F. (eds.) Poverty and Social Exclusion Around the Mediterranean Sea. Economic Studies in Inequality, Social Exclusion and Well-Being, pp. 247–269. Springer, Boston (2013). doi: 10.1007/978-1-4614-5263-8_9 CrossRefGoogle Scholar
  7. 7.
    Kiselev, I., Alhajj, R.: A self-organizing multi-agent system for adaptive continuous unsupervised learning in complex uncertain environments. In: Fox, D., Gomes, C.P. (eds.) AAAI 2008, pp. 1808–1809. AAAI Press, Chicago (2008)Google Scholar
  8. 8.
    Kohavi, R., Becker, B.: Adult Data Set. https://archive.ics.uci.edu/ml/datasets/Adult. Accessed Feb 2017
  9. 9.
    Lafuente-Lechuga, M., Faura-Martínez, U.: Análisis de los individuos vulnerables a la exclusión social en españa en 2009. An. de ASEPUMA, (21) 2013Google Scholar
  10. 10.
    Levitas, R., Pantazis, C., Fahmy, E., Gordon, D., Lloyd, E., Patsios, D.: The Multi-dimensional Analysis of Social Exclusion. Social Exclusion Task Force, Cabinet Office, London (2007)Google Scholar
  11. 11.
    Park, J.-E., Oh, K.-W.: Multi-agent systems for intelligent clustering. Int. J. Comput. Electr. Autom. Control Inf. Eng. 1(11), 275–280 (2007)Google Scholar
  12. 12.
    Ponni, J., Shunmuganathan, K.L: Multi-agent system for data classification from data mining using SVM. In: 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), pp. 828–832, December 2013Google Scholar
  13. 13.
    Ramos, J., Varela, A.: Beyond the margins: analyzing social exclusion with a homeless client dataset. Soc. Work & Soc. 14(2), 104–120 (2016)Google Scholar
  14. 14.
    Rank, M.R., Hirschl, T.A.: Calculate Your Economic Risk. New York Times (2016)Google Scholar
  15. 15.
    Serrano, E., Rovatsos, M., Botia, J.: A qualitative reputation system for multiagent systems with protocol-based communication. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS 2012, Richland, pp. 307–314 (2012)Google Scholar
  16. 16.
    Suh, E., Tiffany, T., Vizard, P., Asghar, Z., Burchardt, T.: Quality of life in Europe: social inequalities. In: 3rd European Quality of Life Survey (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Emilio Serrano
    • 1
  • Pedro del Pozo-Jiménez
    • 1
  • Mari Carmen Suárez-Figueroa
    • 1
  • Jacinto González-Pachón
    • 1
  • Javier Bajo
    • 1
    Email author
  • Asunción Gómez-Pérez
    • 1
  1. 1.Ontology Engineering GroupUniversidad Politécnica de MadridMadridSpain

Personalised recommendations