State Complexity of Suffix Distance

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10316)


The neighbourhood of a regular language with respect to the prefix, suffix and subword distance is always regular and a tight bound for the state complexity of prefix distance neighbourhoods is known. We give upper bounds for the state complexity of the neighbourhood of radius k of an n state DFA (deterministic finite automaton) language with respect to the suffix distance and the subword distance, respectively. For restricted values of k and n we give a matching lower bound for the state complexity of suffix distance neighbourhoods.


Prefix Suffix 


  1. 1.
    Brzozowski, J., Jirásková, G., Zou, C.: Quotient complexity of closed languages. Theory Comput. Syst. 54(2), 277–292 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Calude, C.S., Salomaa, K., Yu, S.: Additive distances and quasi-distances between words. J. Univers. Comput. Sci. 8(2), 141–152 (2002)MathSciNetMATHGoogle Scholar
  3. 3.
    Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of relations. Theoret. Comput. Sci. 286(1), 117–138 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009)CrossRefMATHGoogle Scholar
  5. 5.
    Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. To appear in Computer Science Review, September 2015. arXiv:1509.03254v1 [cs.FL]
  6. 6.
    Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata—a survey. Inf. Comput. 209, 456–470 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Han, Y.-S., Ko, S.-K., Salomaa, K.: The edit distance between a regular language and a context-free language. Int. J. Found. Comput. Sci. 24, 1067–1082 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. J. Automata Lang. Comb. 9, 293–309 (2004)MathSciNetMATHGoogle Scholar
  9. 9.
    Kari, L., Konstantinidis, S., Kopecki, S., Yang, M.: An efficient algorithm for computing the edit distance of a regular language via input-altering transducers. CoRR abs/1406.1041 (2014)Google Scholar
  10. 10.
    Konstantinidis, S.: Computing the edit distance of a regular language. Inf. Comput. 205, 1307–1316 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kutrib, M., Meckel, K., Wendlandt, M.: Parameterized prefix distance between regular languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 419–430. Springer, Cham (2014). doi: 10.1007/978-3-319-04298-5_37 CrossRefGoogle Scholar
  12. 12.
    Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal languages. Bull. EATCS 111, 70–86 (2013)MathSciNetGoogle Scholar
  13. 13.
    Lothaire, M.: Algorithms on words. In: Applied Combinatorics on Words. Encyclopedia of Mathematics and it’s Applications, vol. 105. Cambridge University Press, New York (2005)Google Scholar
  14. 14.
    Ng, T., Rappaport, D., Salomaa, K.: State complexity of neighbourhoods and approximate pattern matching. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 389–400. Springer, Cham (2015). doi: 10.1007/978-3-319-21500-6_31 CrossRefGoogle Scholar
  15. 15.
    Ng, T., Rappaport, D., Salomaa, K.: State complexity of prefix distance. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 238–249. Springer, Cham (2015). doi: 10.1007/978-3-319-22360-5_20 CrossRefGoogle Scholar
  16. 16.
    Ng, T., Rappaport, D., Salomaa, K.: State complexity of prefix distance of subregular languages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 192–204. Springer, Cham (2016). doi: 10.1007/978-3-319-41114-9_15 CrossRefGoogle Scholar
  17. 17.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  18. 18.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 41–110. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations