Skip to main content

2-State 2-Symbol Turing Machines with Periodic Support Produce Regular Sets

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10316))

Included in the following conference series:

Abstract

We say that a Turing machine has periodic support if there is an infinitely repeated word to the left of the input and another infinitely repeated word to the right. In the search for the smallest universal Turing machines, machines that use periodic support have been significantly smaller than those for the standard model (i.e. machines with the usual blank tape on either side of the input). While generalising the model allows us to construct smaller universal machines it makes proving decidability results for the various state-symbol products that restrict program size more difficult. Here we show that given an arbitrary 2-state 2-symbol Turing machine and a configuration with periodic support the set of reachable configurations is regular. Unlike previous decidability results for 2-state 2-symbol machines, here we include in our consideration machines that do not reserve a transition rule for halting, which further adds to the difficulty of giving decidability results.

This work is supported by Swiss National Science Foundation grant numbers 200021-153295 and 200021-166231. The author thanks the anonymous reviewers for their careful reading of the paper and their helpful comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that applying mapping (9) to machines of the form given by Eq. (7) also flips the read symbols and so applying it to \(\varSigma =(\sigma _1,\sigma _2,\sigma _3,\sigma _4)\) gives \((\overline{\sigma _2},\overline{\sigma _1},\overline{\sigma _4},\overline{\sigma _3})\) instead of \((\overline{\sigma _1},\overline{\sigma _2},\overline{\sigma _3},\overline{\sigma _4})\).

References

  1. Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg (2001). doi:10.1007/3-540-45132-3_1

    Chapter  Google Scholar 

  2. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Hermann, G.: The uniform halting problem for generalized one state Turing machines. In: Proceedings, Ninth Annual Symposium on Switching and Automata Theory (FOCS), pp. 368–372. IEEE Computer Society Press, October 1968

    Google Scholar 

  4. Kudlek, M.: Small deterministic Turing machines. TCS 168(2), 241–255 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Minsky, M.: Size and structure of universal Turing machines using tag systems. In: Recursive Function Theory, Symposium in Pure Mathematics, vol. 5, pp. 229–238 (1962)

    Google Scholar 

  6. Neary, T., Woods, D.: Four small universal Turing machines. Fundam. Inform. 91(1), 123–144 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Neary, T., Woods, D.: Small weakly universal Turing machines. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 262–273. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03409-1_24

    Chapter  Google Scholar 

  8. Neary, T., Woods, D.: The complexity of small universal Turing machines: a survey. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 385–405. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27660-6_32

    Chapter  Google Scholar 

  9. Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing machines. Math. Notes (Springer) 13(6), 537–541 (1973)

    Article  MATH  Google Scholar 

  10. Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja mashin T’juring. Problemi kibernetiki, pp. 91–118 (1978). (in Russian)

    Google Scholar 

  11. Rogozhin, Y.: Small universal Turing machines. TCS 168(2), 215–240 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wagner, K.: Universelle Turingmaschinen mit n-dimensionale band. Elektronische Informationsverarbeitung und Kybernetik 9(7–8), 423–431 (1973)

    MathSciNet  MATH  Google Scholar 

  13. Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines. J. ACM 8(4), 476–483 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turlough Neary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 IFIP International Federation for Information Processing

About this paper

Cite this paper

Neary, T. (2017). 2-State 2-Symbol Turing Machines with Periodic Support Produce Regular Sets. In: Pighizzini, G., Câmpeanu, C. (eds) Descriptional Complexity of Formal Systems. DCFS 2017. Lecture Notes in Computer Science(), vol 10316. Springer, Cham. https://doi.org/10.1007/978-3-319-60252-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60252-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60251-6

  • Online ISBN: 978-3-319-60252-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics