2-State 2-Symbol Turing Machines with Periodic Support Produce Regular Sets

  • Turlough NearyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10316)


We say that a Turing machine has periodic support if there is an infinitely repeated word to the left of the input and another infinitely repeated word to the right. In the search for the smallest universal Turing machines, machines that use periodic support have been significantly smaller than those for the standard model (i.e. machines with the usual blank tape on either side of the input). While generalising the model allows us to construct smaller universal machines it makes proving decidability results for the various state-symbol products that restrict program size more difficult. Here we show that given an arbitrary 2-state 2-symbol Turing machine and a configuration with periodic support the set of reachable configurations is regular. Unlike previous decidability results for 2-state 2-symbol machines, here we include in our consideration machines that do not reserve a transition rule for halting, which further adds to the difficulty of giving decidability results.


  1. 1.
    Baiocchi, C.: Three small universal Turing machines. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 1–10. Springer, Heidelberg (2001). doi: 10.1007/3-540-45132-3_1 CrossRefGoogle Scholar
  2. 2.
    Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Hermann, G.: The uniform halting problem for generalized one state Turing machines. In: Proceedings, Ninth Annual Symposium on Switching and Automata Theory (FOCS), pp. 368–372. IEEE Computer Society Press, October 1968Google Scholar
  4. 4.
    Kudlek, M.: Small deterministic Turing machines. TCS 168(2), 241–255 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Minsky, M.: Size and structure of universal Turing machines using tag systems. In: Recursive Function Theory, Symposium in Pure Mathematics, vol. 5, pp. 229–238 (1962)Google Scholar
  6. 6.
    Neary, T., Woods, D.: Four small universal Turing machines. Fundam. Inform. 91(1), 123–144 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Neary, T., Woods, D.: Small weakly universal Turing machines. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds.) FCT 2009. LNCS, vol. 5699, pp. 262–273. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03409-1_24 CrossRefGoogle Scholar
  8. 8.
    Neary, T., Woods, D.: The complexity of small universal Turing machines: a survey. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 385–405. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27660-6_32 CrossRefGoogle Scholar
  9. 9.
    Pavlotskaya, L.: Solvability of the halting problem for certain classes of Turing machines. Math. Notes (Springer) 13(6), 537–541 (1973)CrossRefzbMATHGoogle Scholar
  10. 10.
    Pavlotskaya, L.: Dostatochnye uslovija razreshimosti problemy ostanovki dlja mashin T’juring. Problemi kibernetiki, pp. 91–118 (1978). (in Russian)Google Scholar
  11. 11.
    Rogozhin, Y.: Small universal Turing machines. TCS 168(2), 215–240 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wagner, K.: Universelle Turingmaschinen mit n-dimensionale band. Elektronische Informationsverarbeitung und Kybernetik 9(7–8), 423–431 (1973)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Watanabe, S.: 5-symbol 8-state and 5-symbol 6-state universal Turing machines. J. ACM 8(4), 476–483 (1961)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Institute of NeuroinformaticsUniversity of Zürich and ETH ZürichZürichSwitzerland

Personalised recommendations