Concise Representations of Reversible Automata
Conference paper
First Online:
- 3 Citations
- 286 Downloads
Abstract
We present two concise representations of reversible automata. Both representations have a size which is comparable with the size of the minimum equivalent deterministic automaton and can be exponentially smaller than the size of the explicit representations of corresponding reversible automata. Using those representations it is possible to simulate the computations of reversible automata without explicitly writing down their complete descriptions.
Notes
Acknowledgements
We are indebted with the anonymous referees for valuable suggestions.
References
- 1.Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Cormen, T.H.: Introduction to Algorithms. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
- 3.Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer, Cham (2015). doi: 10.1007/978-3-319-21500-6_22 CrossRefGoogle Scholar
- 4.Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Boston (1979)zbMATHGoogle Scholar
- 5.Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS, pp. 66–75. IEEE Computer Society (1997)Google Scholar
- 6.Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 83–98. Springer, Cham (2014). doi: 10.1007/978-3-319-13350-8_7 CrossRefGoogle Scholar
- 7.Kutrib, M.: Reversible and irreversible computations of deterministic finite-state devices. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 38–52. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48057-1_3 CrossRefGoogle Scholar
- 8.Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Lange, K., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60(2), 354–367 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Lavado, G.J., Pighizzini, G., Prigioniero, L.: Minimal and reduced reversible automata. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 168–179. Springer, Cham (2016). doi: 10.1007/978-3-319-41114-9_13 CrossRefGoogle Scholar
- 11.Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992). doi: 10.1007/BFb0023844 Google Scholar
- 12.Toffoli, T.: Reversible computing. In: Bakker, J., Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). doi: 10.1007/3-540-10003-2_104 CrossRefGoogle Scholar
Copyright information
© IFIP International Federation for Information Processing 2017