Concise Representations of Reversible Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10316)

Abstract

We present two concise representations of reversible automata. Both representations have a size which is comparable with the size of the minimum equivalent deterministic automaton and can be exponentially smaller than the size of the explicit representations of corresponding reversible automata. Using those representations it is possible to simulate the computations of reversible automata without explicitly writing down their complete descriptions.

References

  1. 1.
    Bennett, C.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cormen, T.H.: Introduction to Algorithms. MIT Press, Cambridge (2009)MATHGoogle Scholar
  3. 3.
    Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer, Cham (2015). doi:10.1007/978-3-319-21500-6_22 CrossRefGoogle Scholar
  4. 4.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Boston (1979)MATHGoogle Scholar
  5. 5.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS, pp. 66–75. IEEE Computer Society (1997)Google Scholar
  6. 6.
    Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 83–98. Springer, Cham (2014). doi:10.1007/978-3-319-13350-8_7 CrossRefGoogle Scholar
  7. 7.
    Kutrib, M.: Reversible and irreversible computations of deterministic finite-state devices. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 38–52. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48057-1_3 CrossRefGoogle Scholar
  8. 8.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lange, K., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput. Syst. Sci. 60(2), 354–367 (2000)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lavado, G.J., Pighizzini, G., Prigioniero, L.: Minimal and reduced reversible automata. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 168–179. Springer, Cham (2016). doi:10.1007/978-3-319-41114-9_13 CrossRefGoogle Scholar
  11. 11.
    Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992). doi:10.1007/BFb0023844 Google Scholar
  12. 12.
    Toffoli, T.: Reversible computing. In: Bakker, J., Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). doi:10.1007/3-540-10003-2_104 CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations