Square on Deterministic, Alternating, and Boolean Finite Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10316)

Abstract

We investigate the state complexity of the square operation on languages represented by deterministic, alternating, and Boolean automata. For each k such that \(1 \le k \le n-2\), we describe a binary language accepted by an n-state DFA with k final states meeting the upper bound \(n2^n - k2^{n-1}\) on the state complexity of its square. We show that in the case of \(k=n-1\), the corresponding upper bound cannot be met. Using the DFA witness for square with \(2^n\) states where half of them are final, we get the tight upper bounds on the complexity of the square operation on alternating and Boolean automata.

References

  1. 1.
    Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata, and sequential networks. Theor. Comput. Sci. 10, 19–35 (1980). http://dx.doi.org/10.1016/0304-3975(80)90069-9 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Čevorová, K., Jirásková, G., Krajňáková, I.: On the square of regular languages. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 136–147. Springer, Cham (2014). http://dx.doi.org/10.1007/978-3-319-08846-4_10 Google Scholar
  3. 3.
    Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata. Int. J. Comput. Math. 35(1–4), 117–132 (1990). http://dx.doi.org/10.1080/00207169008803893 CrossRefMATHGoogle Scholar
  4. 4.
    Hospodár, M., Jirásková, G.: Concatenation on deterministic and alternating automata. In: Bordihn, H., Freund, R., Nagy, B., Vaszil, G. (eds.) NCMA 2016, vol. 321, pp. 179–194. Österreichische Computer Gesellschaft, books@ocg.at (2016)Google Scholar
  5. 5.
    Jirásková, G.: Descriptional complexity of operations on alternating and boolean automata. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 196–204. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30642-6_19 CrossRefGoogle Scholar
  6. 6.
    Leiss, E.L.: Succint representation of regular languages by boolean automata. Theor. Comput. Sci. 13, 323–330 (1981)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math. Doklady 11, 1373–1375 (1970)MATHGoogle Scholar
  8. 8.
    Rampersad, N.: The state complexity of \({L}^2\) and \({L}^k\). Inf. Process. Lett. 98(6), 231–234 (2006). http://dx.doi.org/10.1016/j.ipl.2005.06.011 CrossRefMATHGoogle Scholar
  9. 9.
    Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston (2012)MATHGoogle Scholar
  10. 10.
    Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). http://dx.doi.org/10.1016/0304-3975(92)00011-F MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Mathematical InstituteSlovak Academy of SciencesKošiceSlovakia

Personalised recommendations