Advertisement

Computational Completeness of Networks of Evolutionary Processors with Elementary Polarizations and a Small Number of Processors

  • Rudolf Freund
  • Vladimir Rogojin
  • Sergey VerlanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10316)

Abstract

We improve previous results obtained for networks of evolutionary processors with elementary polarizations \(-1,0,1\) by showing that only the very small number of seven processors is needed to obtain computational completeness. In the case of not requiring a special output node even only five processors are shown to be sufficient.

References

  1. 1.
    Alhazov, A., Freund, R., Rogozhin, V., Rogozhin, Y.: Computational completeness of complete, star-like, and linear hybrid networks of evolutionary processors with a small number of processors. Nat. Comput. 15(1), 51–68 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y.: Circular post machines and P systems with exo-insertion and deletion. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 73–86. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28024-5_7 CrossRefGoogle Scholar
  3. 3.
    Alhazov, A., Martín-Vide, C., Rogozhin, Y.: On the number of nodes in universal networks of evolutionary processors. Acta Informat. 43(5), 331–339 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alhazov, A., Martín-Vide, C., Rogozhin, Y.: Networks of evolutionary processors with two nodes are unpredictable. In: Loos, R., Fazekas, S.Z., Martín-Vide, C. (eds.) LATA 2007. Proceedings of the 1st International Conference on Language and Automata Theory and Applications. Report, vol. 35/07, pp. 521–528. Research Group on Mathematical Linguistics, Universitat Rovira i Virgili, Tarragona (2007)Google Scholar
  5. 5.
    Arroyo, F., Canaval, S., Mitrana, V.: Popescu, Ş: On the computational power of networks of polarized evolutionary processors. Inf. Comput. 253(3), 371–380 (2017)CrossRefzbMATHGoogle Scholar
  6. 6.
    Arroyo, F., Gómez Canaval, S., Mitrana, V., Popescu, Ş.: Networks of polarized evolutionary processors are computationally complete. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 101–112. Springer, Cham (2014). doi: 10.1007/978-3-319-04921-2_8 CrossRefGoogle Scholar
  7. 7.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Solving NP-complete problems with networks of evolutionary processors. In: Mira, J., Prieto, A. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001). doi: 10.1007/3-540-45720-8_74 CrossRefGoogle Scholar
  8. 8.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Networks of evolutionary processors. Acta Inform. 39(6–7), 517–529 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Freund, R., Rogozhin, Y., Verlan, S.: Generating and accepting P systems with minimal left and right insertion and deletion. Nat. Comput. 13(2), 257–268 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Manea, F., Martín-Vide, C., Mitrana, V.: Accepting networks of evolutionary word and picture processors: a survey. Sci. Appl. Lang. Methods 2, 525–560 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: A new class of symbolic abstract neural nets: tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002). doi: 10.1007/3-540-45655-4_32 CrossRefGoogle Scholar
  12. 12.
    Popescu, S.: Networks of polarized evolutionary processors with elementary polarization of symbols. In: NCMA 2016, 275–285 (2016)Google Scholar
  13. 13.
    Post, E.L.: Formal reductions of the general combinatorial decision problem. Am. J. Math. 65(2), 197–215 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  15. 15.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3. Springer, Heidelberg (1997)zbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Rudolf Freund
    • 1
  • Vladimir Rogojin
    • 2
  • Sergey Verlan
    • 3
    Email author
  1. 1.Faculty of InformaticsTU WienViennaAustria
  2. 2.Department of Information TechnologiesÅbo Akademi UniversityTurkuFinland
  3. 3.Laboratoire d’Algorithmique, Complexité et LogiqueUniversité Paris Est CréteilCréteilFrance

Personalised recommendations