An Observational Approach to Defining Linearizability on Weak Memory Models

  • John Derrick
  • Graeme Smith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10321)


In this paper we present a framework for defining linearizability on weak memory models. The purpose of the framework is to be able to define the correctness of concurrent algorithms in a uniform way across a variety of memory models. To do so linearizability is defined within the framework in terms of memory order as opposed to program order. Such a generalisation of the original definition of linearizability enables it to be applied to non-sequentially consistent architectures. It also allows the definition to be given in terms of observable effects rather than being dependent on an understanding of the weak memory model architecture. We illustrate the framework on the TSO (Total Store Order) weak memory model, and show that it respects existing definitions of linearizability on TSO.


Shared Memory Memory Model Program Counter Abstract Specification Linearization Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.: The semantics of power and ARM multiprocessor machine code. In: Petersen, L., Chakravarty, M.M.T. (eds.) DAMP 2009, pp. 13–24. ACM (2008)Google Scholar
  2. 2.
    Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison under abstraction for verifying linearizability. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 477–490. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73368-3_49 CrossRefGoogle Scholar
  3. 3.
    Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library correctness on the TSO memory model. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28869-2_5 CrossRefGoogle Scholar
  4. 4.
    Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular safety checking for fine-grained concurrency. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–248. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74061-2_15 CrossRefGoogle Scholar
  5. 5.
    Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4:1–4:43 (2011)CrossRefGoogle Scholar
  6. 6.
    Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with potential linearisation points. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 323–337. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21437-0_25 CrossRefGoogle Scholar
  7. 7.
    Derrick, J., Smith, G.: A framework for correctness criteria on weak memory models. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 178–194. Springer, Cham (2015). doi: 10.1007/978-3-319-19249-9_12 CrossRefGoogle Scholar
  8. 8.
    Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 341–356. Springer, Cham (2014). doi: 10.1007/978-3-319-10181-1_21 Google Scholar
  9. 9.
    Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical lock-free queue algorithm. In: Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30232-2_7 CrossRefGoogle Scholar
  10. 10.
    Fitzpatrick, J.: An interview with Steve Furber. Commun. ACM 54(5), 34–39 (2011)CrossRefGoogle Scholar
  11. 11.
    Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: sequentially consistent specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 31–45. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33651-5_3 CrossRefGoogle Scholar
  12. 12.
    Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)CrossRefGoogle Scholar
  13. 13.
    Maranget, L., Sarkar, S., Sewell, P.: A tutorial introduction to the ARM and POWER relaxed memory models (2012). Draft available from
  14. 14.
    Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive proofs with KIV. In: Automated Deduction, pp. 13–39. Kluwer (1998)Google Scholar
  15. 15.
    Schellhorn, G., Wehrheim, H., Derrick, J.: A sound and complete proof technique for linearizability of concurrent data structures. ACM Trans. Comput. Log. 15(4), 31:1–31:37 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7), 89–97 (2010)CrossRefGoogle Scholar
  17. 17.
    Smith, G., Derrick, J., Dongol, B.: Admit your weakness: verifying correctness on TSO architectures. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS, vol. 8997, pp. 364–383. Springer, Cham (2015). doi: 10.1007/978-3-319-15317-9_22 Google Scholar
  18. 18.
    Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache Coherence. Synthesis Lectures on Computer Architecture. Morgan & Claypool Publishers, San Rafael (2011)Google Scholar
  19. 19.
    Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp. 311–326. Springer, Cham (2013). doi: 10.1007/978-3-319-03077-7_21 CrossRefGoogle Scholar
  20. 20.
    Travkin, O., Wehrheim, H.: Handling TSO in mechanized linearizability proofs. In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 132–147. Springer, Cham (2014). doi: 10.1007/978-3-319-13338-6_11 Google Scholar
  21. 21.
    Vafeiadis, V.: Modular fine-grained concurrency verification. Ph.D. thesis, University of Cambridge (2007)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Department of ComputingUniversity of SheffieldSheffieldUK
  2. 2.School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations