Learning-Based Compositional Parameter Synthesis for Event-Recording Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10321)

Abstract

We address the verification of timed concurrent systems with unknown or uncertain constants considered as parameters. First, we introduce parametric event-recording automata (PERAs), as a new subclass of parametric timed automata (PTAs). Although in the non-parametric setting event-recording automata yield better decidability results than timed automata, we show that the most common decision problem remains undecidable for PERAs. Then, given one set of components with parameters and one without, we propose a method to compute an abstraction of the non-parametric set of components, so as to improve the verification of reachability properties in the full (parametric) system. We also show that our method can be extended to general PTAs. We implemented our method, which shows promising results.

Notes

Acknowledgment

We warmly thank Lăcrămioara Aştefănoaei for her appreciated help with installing and using the prototype tool of [9].

References

  1. 1.
    Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed automata. Theoret. Comput. Sci. 211(1–2), 253–273 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM (1993)Google Scholar
  3. 3.
    André, É.: What’s decidable about parametric timed automata? In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Cham (2016). doi:10.1007/978-3-319-29510-7_3 CrossRefGoogle Scholar
  4. 4.
    André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. IJFCS 20(5), 819–836 (2009)MathSciNetMATHGoogle Scholar
  5. 5.
    André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32759-9_6 CrossRefGoogle Scholar
  6. 6.
    André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed automata. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 400–416. Springer, Cham (2016). doi:10.1007/978-3-319-47846-3_25 CrossRefGoogle Scholar
  7. 7.
    André, É., Lipari, G., Nguyen, H.G., Sun, Y.: Reachability preservation based parameter synthesis for timed automata. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 50–65. Springer, Cham (2015). doi:10.1007/978-3-319-17524-9_5 Google Scholar
  8. 8.
    André, É., Markey, N.: Language preservation problems in parametric timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 27–43. Springer, Cham (2015). doi:10.1007/978-3-319-22975-1_3 CrossRefGoogle Scholar
  9. 9.
    Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C.-H., Ruess, H.: Compositional parameter synthesis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 60–68. Springer, Cham (2016). doi:10.1007/978-3-319-48989-6_4 Google Scholar
  10. 10.
    Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: an evaluation of automated assume-guarantee reasoning. TOSEM 17(2), 7:1–7:52 (2008)CrossRefGoogle Scholar
  11. 11.
    Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003). doi:10.1007/3-540-36577-X_24 CrossRefGoogle Scholar
  12. 12.
    Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parameter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78929-1_14 CrossRefGoogle Scholar
  13. 13.
    Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. JLAP 52–53, 183–220 (2002)MathSciNetMATHGoogle Scholar
  14. 14.
    Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. Trans. Softw. Eng. 41(5), 445–461 (2015)CrossRefMATHGoogle Scholar
  15. 15.
    Lin, S.W., André, É., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for compositional verification of timed systems. TSE 40(2), 137–153 (2014)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Université Paris 13, LIPN, CNRS, UMR 7030VilletaneuseFrance
  2. 2.SCSENanyang Technological UniversitySingaporeSingapore

Personalised recommendations