Session Types for Link Failures

  • Manuel Adameit
  • Kirstin PetersEmail author
  • Uwe Nestmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10321)


We strive to use session type technology to prove behavioural properties of fault-tolerant distributed algorithms. Session types are designed to abstractly capture the structure of (even multi-party) communication protocols. The goal of session types is the analysis and verification of the protocols’ behavioural properties. One important such property is progress, i.e., the absence of (unintended) deadlock. Distributed algorithms often resemble (compositions of) multi-party communication protocols. In contrast to protocols that are typically studied with session types, they are often designed to cope with system failures. An essential behavioural property is (successful) termination, despite failures, but it is often elaborate to prove for distributed algorithms.

We extend multi-party session types with optional blocks that cover a limited class of link failures. This allows us to automatically derive termination of distributed algorithms that come within these limits.


Local Type Type System Link Failure Parallel Composition Reduction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adameit, M., Peters, K., Nestmann, U.: Session types for link failures. Technical report, TU Berlin (2017).
  2. 2.
    Bettini, L., Coppo, M., D’Antoni, L., Luca, M., Dezani-Ciancaglini, M., Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In: Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85361-9_33 CrossRefGoogle Scholar
  3. 3.
    Bocchi, L., Honda, K., Tuosto, E., Yoshida, N.: A theory of design-by-contract for distributed multiparty interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 162–176. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15375-4_12 CrossRefGoogle Scholar
  4. 4.
    Capecchi, S., Giachino, E., Yoshida, N.: Global escape in multiparty sessions. Math. Struct. Comput. Sci. 26(2), 156–205 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions in session types. In: Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 402–417. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85361-9_32 CrossRefGoogle Scholar
  6. 6.
    Demangeon, R.: Nested protocols in session types. Personal communication about an extended version of [7] that is currently prepared by R. Demangeon (2015)Google Scholar
  7. 7.
    Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32940-1_20 CrossRefGoogle Scholar
  8. 8.
    Kouzapas, D., Gutkovas, R., Gay, S.J.: Session types for broadcasting. In: Proceedings of PLACES. EPTCS, vol. 155, pp. 25–31 (2014)Google Scholar
  9. 9.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)zbMATHGoogle Scholar
  10. 10.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I and II. Inf. Comput. 100(1), 1–77 (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.TU BerlinBerlinGermany

Personalised recommendations