A Feedback Mechanism Based on Granular Computing to Improve Consensus in GDM

  • Francisco Javier Cabrerizo
  • Francisco Chiclana
  • Ignacio Javier Pérez
  • Francisco Mata
  • Sergio Alonso
  • Enrique Herrera-Viedma
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 357)


Group decision making is an important task in real world activities. It consists in obtaining the best solution to a particular problem according to the opinions given by a set of decision makers. In such a situation, an important issue is the level of consensus achieved among the decision makers before making a decision. For this reason, different feedback mechanisms, which help decision makers for reaching the highest degree of consensus possible, have been proposed in the literature. In this contribution, we present a new feedback mechanism based on granular computing to improve consensus in group decision making problems. Granular computing is a framework of designing, processing, and interpretation of information granules, which can be used to obtain a required flexibility to improve the level of consensus within the group of decision makers.


Group decision making Consensus Feedback mechanism Granular computing 



The authors would like to acknowledge FEDER financial support from the Projects TIN2013-40658-P and TIN2016-75850-P.


  1. 1.
    Alonso S, Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2013) A linguistic consensus model for web 2.0 communities. Appl Soft Comput 13(1):149–157CrossRefGoogle Scholar
  2. 2.
    Balamash A, Pedrycz W, Al-Hmouz R, Morfeq A (2016) An expansion of fuzzy information granules through successive refinements of their information content and their use to system modeling. Expert Syst Appl 43(6):2985–2997Google Scholar
  3. 3.
    Bargiela A (2001)Interval and ellipsoidal uncertainty models. In: Pedrycz W (ed) Granular computing: an emerging paradigm. Physica-Verlag, pp 23–57Google Scholar
  4. 4.
    Bargiela A, Pedrycz W (2003) Granular computing: an introduction. Kluwer Academic Publishers, DordrechtzbMATHCrossRefGoogle Scholar
  5. 5.
    Bordogna G, Fedrizzi M, Pasi A (1997) A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Trans Syst Man Cybern—Part A: Syst Humans 27(1):126–133CrossRefGoogle Scholar
  6. 6.
    Butler CT, Rothstein A (2006) On conflict and consensus: a handbook on formal consensus decision making. Tahoma ParkGoogle Scholar
  7. 7.
    Cabrerizo FJ, Pérez IJ, Herrera-Viedma E (2010) Managing the consensus in group decision making in an unbalanced fuzzy linguistic context with incomplete information. Knowl-Based Syst 23(2):169–181CrossRefGoogle Scholar
  8. 8.
    Cabrerizo FJ, Moreno JM, Pérez IJ, Herrera-Viedma E (2010) Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Comput 14(5):451–463CrossRefGoogle Scholar
  9. 9.
    Cabrerizo FJ, Heradio R, Pérez IJ, Herrera-Viedma E (2010) A selection process based on additive consistency to deal with incomplete fuzzy linguistic information. J Univers Comput Sci 16(1):62–81MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cabrerizo FJ, Chiclana F, Al-Hmouz R, Morfeq A, Balamash AS, Herrera-Viedma E (2015) Fuzzy decision making and consensus: challenges. J Intell Fuzzy Syst 29(3):1109–1118MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Chen SJ, Hwang CL (1992) Fuzzy multiple attributive decision making: theory and its applications. Springer, BerlinCrossRefGoogle Scholar
  12. 12.
    Chiclana F, Herrera F, Herrera-Viedma E, Poyatos MC (1996) A classification method of alternatives of multiple preference ordering criteria based on fuzzy majority. J Fuzzy Math 4(4):801–813MathSciNetzbMATHGoogle Scholar
  13. 13.
    Chiclana F, Herrera F, Herrera-Viedma E (1998) Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations. Fuzzy Sets Syst 97(1):33–48MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chiclana F, Herrera F, Herrera-Viedma E (2002) A note on the internal consistency of various preference representations. Fuzzy Sets Syst 131(1):75–78MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chu J, Liu X, Wang Y, Chin K-S (2016) A group decision making model considering both the additive consistency and group consensus of intuitionistic fuzzy preference relations. Comput Ind Eng 101:227–242CrossRefGoogle Scholar
  16. 16.
    Dong Y, Zhang H (2014) Multiperson decision making with different preference representation structures: a direct consensus framework and its properties. Knowl-Based Syst 58:45–57CrossRefGoogle Scholar
  17. 17.
    Dong Y, Xiao J, Zhang H, Wang T (2016) Managing consensus and weights in iterative multiple-attribute group decision making. Appl Soft Comput 48:80–90CrossRefGoogle Scholar
  18. 18.
    Fodor J, Roubens M (1994) Fuzzy preference modelling and multicriteria decision support. Kluwer, DordrechtzbMATHCrossRefGoogle Scholar
  19. 19.
    Herrera F, Herrera-Viedma E, Verdegay JL (1996) A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst 78(1):73–87MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Herrera F, Herrera-Viedma E, Verdegay JL (1997) A rational consensus model in group decision making using linguistic assessments. Fuzzy Sets Syst 88(1):31–49zbMATHCrossRefGoogle Scholar
  21. 21.
    Herrera F, Herrera-Viedma E, Verdegay JL (1997) Linguistic measures based on fuzzy coincidence for reaching consensus in group decision making. Int J Approx Reason 16(3–4):309–334zbMATHCrossRefGoogle Scholar
  22. 22.
    Herrera-Viedma E, Herrera F, Chiclana F (2002) A consensus model for multiperson decision making with different preference structures. IEEE Trans Syst Man Cybern—Part A: Syst Humans 32(3):394–402zbMATHCrossRefGoogle Scholar
  23. 23.
    Herrera-Viedma E, Herrera F, Chiclana F, Luque M (2004) Some issues on consistency of fuzzy preference relations. Eur J Oper Res 154(1):98–109MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Herrera-Viedma E, Martínez L, Mata F, Chiclana F (2005) A consensus support system model for group decision-making problems with multigranular linguistic preference relations. IEEE Trans Fuzzy Syst 13(5):644–658CrossRefGoogle Scholar
  25. 25.
    Herrera-Viedma E, Alonso S, Chiclana F, Herrera F (2007) A consensus model for group decision making with incomplete fuzzy preference relations. IEEE Trans Fuzzy Syst 15(5):863–877zbMATHCrossRefGoogle Scholar
  26. 26.
    Herrera-Viedma E, Herrera F, Alonso S (2007) Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Trans Syst Man Cybern—Part B: Cybern 37(1):176–189zbMATHCrossRefGoogle Scholar
  27. 27.
    Herrera-Viedma E, Cabrerizo FJ, Kacprzyk J, Pedrycz W (2014) A review of soft consensus models in a fuzzy environment. Inf Fusion 17:4–13CrossRefGoogle Scholar
  28. 28.
    Kacprzyk J, Fedrizzi M (1986) ‘Soft’ consensus measures for monitoring real consensus reaching processes under fuzzy preferences. Control Cybern 15(3–4):309–323MathSciNetzbMATHGoogle Scholar
  29. 29.
    Kacprzyk J, Fedrizzi M (1988) A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences. Eur J Oper Res 34(3):316–325MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kacprzyk J, Fedrizzi M, Nurmi H (1992) Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets Syst 49(1):21–31MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Kacprzyk K, Zadrozny S, Ras ZW (2010) How to support consensus reaching using action rules: a novel approach. Int J Uncertain Fuzziness Knowl-Based Syst 18(4):451–470MathSciNetCrossRefGoogle Scholar
  32. 32.
    Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, pp 1942–1948Google Scholar
  33. 33.
    Kennedy J, Eberhart RC, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publishers, San FranciscoGoogle Scholar
  34. 34.
    Orlovski SA (1978) Decision-making with a fuzzy preference relation. Fuzzy Sets Syst 1(3):155–167MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ma L-C (2016) A new group ranking approach for ordinal preferences based on group maximum consensus sequences. Eur J Oper Res 251(1):171–181MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Palomares I, Estrella FJ, Martínez L, Herrera F (2014) Consensus under a fuzzy context: taxonomy, analysis framework AFRYCA and experimental case of study. Inf Fusion 20:252–271CrossRefGoogle Scholar
  37. 37.
    Pawlak Z (1981) Information systems theoretical foundations. Inf Syst 6(3):205–218zbMATHCrossRefGoogle Scholar
  38. 38.
    Pedrycz W (2011) The principle of justifiable granularity and an optimization of information granularity allocation as fundamentals of granular computing. J Inf Process Syst 7(3):397–412CrossRefGoogle Scholar
  39. 39.
    Pedrycz A, Hirota K, Pedrycz W, Dong F (2012) Granular representation and granular computing with fuzzy sets. Fuzzy Sets Syst 203:17–32MathSciNetCrossRefGoogle Scholar
  40. 40.
    Pedrycz W (2013) Granular computing: analysis and design of intelligent systems. CRC Press/Francis Taylor, Boca RatonCrossRefGoogle Scholar
  41. 41.
    Pedrycz W (2013) Knowledge management and semantic modeling: a role of information granularity. Int J Softw Eng Knowl 23(1):5–12CrossRefGoogle Scholar
  42. 42.
    Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2010) A mobile decision support system for dynamic group decision making problems. IEEE Trans Syst Man Cybern—Part A: Syst Humans 40(6):1244–1256CrossRefGoogle Scholar
  43. 43.
    Pérez IJ, Cabrerizo FJ, Herrera-Viedma E (2011) Group decision making problems in a linguistic and dynamic context. Expert Syst Appl 38(3):1675–1688CrossRefGoogle Scholar
  44. 44.
    Pérez IJ, Cabrerizo FJ, Alonso S, Herrera-Viedma E (2014) A new consensus model for group decision making problems with non homogeneous experts. IEEE Trans Syst Man Cybern: Syst 44(4):494–498CrossRefGoogle Scholar
  45. 45.
    Saint S, Lawson JR (1994) Rules for reaching consensus: a modern approach to decision making. Jossey-BassGoogle Scholar
  46. 46.
    Slowinski R, Greco S, Matarazzo B (2002) Rough set analysis of preference-ordered data. In: Alpigini JJ, Peters JF, Skowron A, Zhong N (eds) Rough sets and current trends in computing, pp 44–59. SpringerGoogle Scholar
  47. 47.
    Tanino T (1984) Fuzzy preference orderings in group decision making. Fuzzy Sets Syst 12(2):117–131MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Trelea IC (2003) The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf Process Lett 85:317–325MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Ureña MR, Cabrerizo FJ, Morente-Molinera JA, Herrera-Viedma E (2016) GDM-R: a new framework in R to support fuzzy group decision making processes. Inf Sci 357:161–181CrossRefGoogle Scholar
  50. 50.
    Wang X, Pedrycz W, Gacek A, Liu X (2016) From numeric data to information granules: a design through clustering and the principle of justifiable granularity. Knowl-Based Syst 101:100–113CrossRefGoogle Scholar
  51. 51.
    Wu Z, Xu J (2016) Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations. Omega 65:28–40CrossRefGoogle Scholar
  52. 52.
    Xu Y, Patnayakuni R, Wang H (2013) The ordinal consistency of a fuzzy preference relation. Inf Sci 224:152–164MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Yager RR (1988) On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans Syst Man Cybern 18(1):183–190zbMATHCrossRefGoogle Scholar
  54. 54.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353zbMATHCrossRefGoogle Scholar
  55. 55.
    Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning. Part I. Inf Sci 8(3):199–243zbMATHCrossRefGoogle Scholar
  56. 56.
    Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning. Part II. Inf Sci 8(4):301–357zbMATHCrossRefGoogle Scholar
  57. 57.
    Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning. Part III. Inf Sci 9(1):43–80zbMATHCrossRefGoogle Scholar
  58. 58.
    Zadeh LA (1983) A computational approach to fuzzy quantifiers in natural languages. Comput Math Appl 9(1):149–184Google Scholar
  59. 59.
    Zadeh LA (2002) Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. J Stat Plan Inference 105(1):233–264MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Francisco Javier Cabrerizo
    • 1
  • Francisco Chiclana
    • 2
  • Ignacio Javier Pérez
    • 3
  • Francisco Mata
    • 4
  • Sergio Alonso
    • 5
  • Enrique Herrera-Viedma
    • 1
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of GranadaGranadaSpain
  2. 2.Faculty of TechnologyDe Montfort UniversityLeicesterEngland
  3. 3.Department of Computer Sciences and EngineeringUniversity of CádizCádizSpain
  4. 4.Department of Computer ScienceUniversity of JaénJaénSpain
  5. 5.Department of Software EngineeringUniversity of GranadaGranadaSpain

Personalised recommendations