Neurotoxicity of Copper

  • Felix Bulcke
  • Ralf Dringen
  • Ivo Florin ScheiberEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)


Copper is an essential trace metal that is required for several important biological processes, however, an excess of copper can be toxic to cells. Therefore, systemic and cellular copper homeostasis is tightly regulated, but dysregulation of copper homeostasis may occur in disease states, resulting either in copper deficiency or copper overload and toxicity. This chapter will give an overview on the biological roles of copper and of the mechanisms involved in copper uptake, storage, and distribution. In addition, we will describe potential mechanisms of the cellular toxicity of copper and copper oxide nanoparticles. Finally, we will summarize the current knowledge on the connection of copper toxicity with neurodegenerative diseases.


Copper Nanoparticles Neurotoxicity Neurodegenerative disease Oxidative stress Brain 


  1. Akatsu H, Hori A, Yamamoto T, et al. Transition metal abnormalities in progressive dementias. Biometals. 2012;25:337–50. doi: 10.1007/s10534-011-9504-8.PubMedCrossRefGoogle Scholar
  2. Alcaraz-Zubeldia M, Rojas P, Boll C, Ríos C. Neuroprotective effect of acute and chronic administration of copper (II) sulfate against MPP+ neurotoxicity in mice. Neurochem Res. 2001;26:59–64. doi: 10.1023/A:1007680616056.PubMedCrossRefGoogle Scholar
  3. Alcaraz-Zubeldia M, Boll-Woehrlen MC, Montes-Lopez S, et al. Copper sulfate prevents tyrosine hydroxylase reduced activity and motor deficits in a Parkinson’s disease model in mice. Rev Investig Clin. 2009;61:405–11.Google Scholar
  4. Alda JO, Garay R. Chloride (or bicarbonate)-dependent copper uptake through the anion exchanger in human red blood cells. Am J Phys. 1990;259:C570–6.Google Scholar
  5. Alimba CG, Dhillon V, Bakare AA, Fenech M. Genotoxicity and cytotoxicity of chromium, copper, manganese and lead, and their mixture in WIL2-NS human B lymphoblastoid cells is enhanced by folate depletion. Mutat Res Genet Toxicol Environ Mutagen. 2016;798-799:35–47. doi: 10.1016/j.mrgentox.2016.02.002.PubMedCrossRefGoogle Scholar
  6. Almeida E, Diamantino TC, de Sousa O. Marine paints: the particular case of antifouling paints. Prog Org Coatings. 2007;59:2–20. doi: 10.1016/j.porgcoat.2007.01.017.CrossRefGoogle Scholar
  7. Amin ML, Joo JY, Yi DK, An SSA. Surface modification and local orientations of surface molecules in nanotherapeutics. J Control Release. 2015;207:131–42. doi: 10.1016/j.jconrel.2015.04.017.PubMedCrossRefGoogle Scholar
  8. An L, Liu S, Yang Z, Zhang T. Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicol Lett. 2012;213:220–7. doi: 10.1016/j.toxlet.2012.07.007.PubMedCrossRefGoogle Scholar
  9. Anderson KE. Huntington’s disease. In:Handbook of Clinical Neurology. New York: Wiley; 2011. p. 15–24.Google Scholar
  10. Arciello M, Rotilio G, Rossi L. Copper-dependent toxicity in SH-SY5Y neuroblastoma cells involves mitochondrial damage. Biochem Biophys Res Commun. 2005;327:454–9. doi: 10.1016/j.bbrc.2004.12.022.PubMedCrossRefGoogle Scholar
  11. Arguello JM, Eren E, Gonzalez-Guerrero M. The structure and function of heavy metal transport P1B-ATPases. Biometals. 2007;20:233–48. doi: 10.1007/s10534-006-9055-6.PubMedCrossRefGoogle Scholar
  12. Arredondo M, Muñoz P, Mura C, Nùñez M. DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am J Physiol Cell Physiol. 2003;284:C1525–30. doi: 10.1152/ajpcell.00480.2002.PubMedCrossRefGoogle Scholar
  13. Ayton S, Lei P, Duce JA, et al. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann Neurol. 2013;73:554–9. doi: 10.1002/ana.23817.PubMedCrossRefGoogle Scholar
  14. Baecker T, Mangus K, Pfaender S, et al. Loss of COMMD1 and copper overload disrupt zinc homeostasis and influence an autism-associated pathway at glutamatergic synapses. Biometals. 2014;27:715–30. doi: 10.1007/s10534-014-9764-1.PubMedCrossRefGoogle Scholar
  15. Ballard C, Gauthier S, Corbett A, et al. Alzheimer’s disease. Lancet. 2011;377:1019–31. doi: 10.1016/S0140-6736(10)61349-9.PubMedCrossRefGoogle Scholar
  16. Bandmann O, Weiss KH, Kaler SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015;14:103–13. doi: 10.1016/S1474-4422(14)70190-5.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bayer TA, Schäfer S, Simons A, et al. Dietary cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci U S A. 2003;100:14187–92. doi: 10.1073/pnas.2332818100.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ben-Sasson M, Zodrow KR, Genggeng Q, et al. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol. 2014;48:384–93. doi: 10.1021/es404232s.PubMedCrossRefGoogle Scholar
  19. Bertinato J, Swist E, Plouffe LJ, et al. Ctr2 is partially localized to the plasma membrane and stimulates copper uptake in COS-7 cells. Biochem J. 2008;409:731–40. doi: 10.1042/BJ20071025.PubMedCrossRefGoogle Scholar
  20. Bertrand E, Lewandowska E, Szpak M, et al. Neuropathological analysis of pathological forms of astroglia in Wilson’s disease. Folia Neuropathol. 2001;39:73–9.PubMedGoogle Scholar
  21. Boaru SG, Merle U, Uerlings R, et al. Simultaneous monitoring of cerebral metal accumulation in an experimental model of Wilson’s disease by laser ablation inductively coupled plasma mass spectrometry. BMC Neurosci. 2014;15:1–13. doi: 10.1186/1471-2202-15-98.CrossRefGoogle Scholar
  22. Borm PJA, Robbins D, Haubold S, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11–46. doi: 10.1186/1743-8977-3-11.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bousquet-Moore D, Mains RE, Eipper BA. Peptidylglycine α-amidating monooxygenase and copper: a gene-nutrient interaction critical to nervous system function. J Neurosci Res. 2010a;88:2535–45. doi: 10.1002/jnr.22404.
  24. Bousquet-Moore D, Prohaska JR, Nillni EA, et al. Interactions of peptide amidation and copper: novel biomarkers and mechanisms of neural dysfunction. Neurobiol Dis. 2010b;37:130–40. doi: 10.1016/j.nbd.2009.09.016.PubMedCrossRefGoogle Scholar
  25. Brewer GJ, Yuzbasiyan-Gurkan V. Wilson disease. Medicine (Baltimore). 1992;71:139–64.CrossRefGoogle Scholar
  26. Brown DR. Role of the prion protein in copper turnover in astrocytes. Neurobiol Dis. 2004;15:534–43. doi: 10.1016/j.nbd.2003.11.009.PubMedCrossRefGoogle Scholar
  27. Brown DR. Oligomeric alpha-synuclein and its role in neuronal death. IUBMB Life. 2010;62:334–9.PubMedGoogle Scholar
  28. Bulcke F, Dringen R. Copper oxide nanoparticles stimulate glycolytic flux and increase the cellular contents of glutathione and metallothioneins in cultured astrocytes. Neurochem Res. 2014;40:15–26. doi: 10.1007/s11064-014-1458-0.PubMedCrossRefGoogle Scholar
  29. Bulcke F, Dringen R. Handling of copper and copper oxide nanoparticles by astrocytes. Neurochem Res. 2016;41:33–43. doi: 10.1007/s11064-015-1688-9.PubMedCrossRefGoogle Scholar
  30. Bulcke F, Thiel K, Dringen R. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology. 2014;8:775–85. doi: 10.3109/17435390.2013.829591.PubMedGoogle Scholar
  31. Burkhead JL, Gray LW, Lutsenko S. Systems biology approach to Wilson’s disease. Biometals. 2011;24:455–66. doi: 10.1007/s10534-011-9430-9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Camakaris J, Mann JR, Danks DM. Copper metabolism in mottled mouse mutants: copper concentrations in tissues during development. Biochem J. 1979;180:597–604.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Castellani RJ, Rolston RK, Smith MA. Alzheimer disease. Dis Mon. 2010;56:484–546. doi: 10.1016/j.disamonth.2010.06.001.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cater MA, La Fontaine S, Shield K, et al. ATP7B mediates vesicular sequestration of copper: insight into biliary copper excretion. Gastroenterology. 2006;130:493–506. doi: 10.1053/j.gastro.2005.10.054.PubMedCrossRefGoogle Scholar
  35. Cater MA, KT MI, Li Q-X, et al. Intracellular copper deficiency increases amyloid-beta secretion by diverse mechanisms. Biochem J. 2008;412:141–52. doi: 10.1042/BJ20080103.PubMedCrossRefGoogle Scholar
  36. Chen Z, Meng H, Xing G, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett. 2006;163:109–20. doi: 10.1016/j.toxlet.2005.10.003.PubMedCrossRefGoogle Scholar
  37. Chen J, Zhu J, Cho H-H, et al. Differential cytotoxicity of metal oxide nanoparticles. J Exp Nanosci. 2008;3:321–8. doi: 10.1080/17458080802235765.CrossRefGoogle Scholar
  38. Cherny RA, Ayton S, Finkelstein DI, et al. PBT2 reduces toxicity in a C. elegans model of polyQ aggregation and extends lifespan, reduces striatal atrophy and improves motor performance in the R6/2 mouse model of Huntington’s disease. J Huntingtons Dis. 2012;1:211–9. doi: 10.3233/JHD-120029.PubMedGoogle Scholar
  39. Choi BS, Zheng W. Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res. 2009;1248:14–21. doi: 10.1016/j.brainres.2008.10.056.PubMedCrossRefGoogle Scholar
  40. Cobine PA, Ojeda LD, Rigby KM, Winge DR. Yeast contain a non-proteinaceous pool of copper in the mitochondrial matrix. J Biol Chem. 2004;279:14447–55. doi: 10.1074/jbc.M312693200.PubMedCrossRefGoogle Scholar
  41. Crouch PJ, Blake R, Duce JA, et al. Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-beta1-42. J Neurosci. 2005;25:672–679. doi:25/3/672 [pii]\r 10.1523/JNEUROSCI.4276-04.2005.
  42. Crouch PJ, Wai L, Adlard PA, et al. Increasing Cu bioavailability inhibits Aβ oligomers and tau phosphorylation. Proc Natl Acad Sci U S A. 2009;106:381–6. doi: 10.1073/pnas.0809057106.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Cupaioli FA, Zucca FA, Boraschi D, Zecca L. Engineered nanoparticles. How brain friendly is this new guest? Prog Neurobiol. 2014;119-120:20–38.PubMedCrossRefGoogle Scholar
  44. Dankovich TA, Smith JA. Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Res. 2014;63:245–51. doi: 10.1016/j.watres.2014.06.022.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Das SK, Ray K. Wilson’s disease: an update. Nat Clin Pract Neurol. 2006;2:482–93. doi: 10.1038/ncpneuro0291.PubMedCrossRefGoogle Scholar
  46. Davies KM, Hare DJ, Cottam V, et al. Localization of copper and copper transporters in the human brain. Metallomics. 2012;5:43–51. doi: 10.1039/c2mt20151h.CrossRefGoogle Scholar
  47. Davies KM, Bohic S, Carmona A, et al. Copper pathology in vulnerable brain regions in Parkinson’s disease. Neurobiol Aging. 2014;35:858–66. doi: 10.1016/j.neurobiolaging.2013.09.034.PubMedCrossRefGoogle Scholar
  48. de Lores Arnaiz GR, Ordieres MGL. Brain Na+, K+−ATPase activity in aging and disease. Int J Biomed Sci. 2014;10:85–102.Google Scholar
  49. de Romaña DL, Olivares M, Uauy R, Araya M. Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol. 2011;25:3–13. doi: 10.1016/j.jtemb.2010.11.004.PubMedCrossRefGoogle Scholar
  50. Deibel MA, Ehmann WD, Markesbery WR. Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci. 1996;143:137–42. doi: 10.1016/S0022-510X(96)00203-1.PubMedCrossRefGoogle Scholar
  51. Dexter DT, Jenner P, Schapira AH, Marsden CD. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. Ann Neurol. 1992;32(Suppl):S94–100.PubMedCrossRefGoogle Scholar
  52. Dobrowolska J, Dehnhardt M, Matusch A, et al. Quantitative imaging of zinc, copper and lead in three distinct regions of the human brain by laser ablation inductively coupled plasma mass spectrometry. Talanta. 2008;74:717–23. doi: 10.1016/j.talanta.2007.06.051.PubMedCrossRefGoogle Scholar
  53. Donsante A, Johnson P, Jansen LA, Kaler SG. Somatic mosaicism in Menkes disease suggests choroid plexus-mediated copper transport to the developing brain. Am J Med Genet Part A. 2010;152(A):2529–34. doi: 10.1002/ajmg.a.33632.CrossRefGoogle Scholar
  54. Doreulee N, Yanovsky Y, Haas HL. Suppression of long-term potentiation in hippocampal slices by copper. Hippocampus. 1997;7:666–9. doi: 10.1002/(SICI)1098-1063(1997)7:6<666::AID-HIPO8>3.0.CO;2-C.PubMedCrossRefGoogle Scholar
  55. Double KL. Neuronal vulnerability in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:S52–4. doi: 10.1016/S1353-8020(11)70018-9.PubMedCrossRefGoogle Scholar
  56. Du X, Zheng Y, Wang Z, et al. Inhibitory act of selenoprotein P on Cu+/Cu2+-induced tau aggregation and neurotoxicity. Inorg Chem. 2014;53:11221–30. doi: 10.1021/ic501788v.PubMedCrossRefGoogle Scholar
  57. Dusek P, Litwin T, Czlonkowska A. Wilson disease and other neurodegenerations with metal accumulations. Neurol Clin. 2015;33:175–204. doi: 10.1016/j.ncl.2014.09.006.PubMedCrossRefGoogle Scholar
  58. Eskici G, Axelsen PH. Copper and oxidative stress in the pathogenesis of Alzheimer’s disease. Biochemistry. 2012;51:6289–311. doi: 10.1021/bi3006169.PubMedCrossRefGoogle Scholar
  59. Espinoza A, Le Blanc S, Olivares M, et al. Iron, copper, and zinc transport: inhibition of divalent metal transporter 1 (DMT1) and human copper transporter 1 (hCTR1) by shRNA. Biol Trace Elem Res. 2012;146:281–6. doi: 10.1007/s12011-011-9243-2.PubMedCrossRefGoogle Scholar
  60. Eustermann S, Videler H, Yang JC, et al. The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J Mol Biol. 2011;407:149–70. doi: 10.1016/j.jmb.2011.01.034.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fanni D, Fanos V, Gerosa C, et al. Effects of iron and copper overload on the human liver: an ultrastructural study. Curr Med Chem. 2014;21:3768–74.PubMedCrossRefGoogle Scholar
  62. Fedoseienko A, Bartuzi P, Van de Sluis B. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis. Ann N Y Acad Sci. 2014;1314:6–14. doi: 10.1111/nyas.12353.PubMedCrossRefGoogle Scholar
  63. Feng W, Ye F, Xue W, et al. Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol. 2009;75:174–82. doi: 10.1124/mol.108.051516.PubMedCrossRefGoogle Scholar
  64. Ferguson-Miller S, Babcock GT. Heme/copper terminal oxidases. Chem Rev. 1996;96:2889–907. doi: 10.1021/cr950051s.PubMedCrossRefGoogle Scholar
  65. Forte G, Bocca B, Senofonte O, et al. Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J Neural Transm. 2004;111:1031–40. doi: 10.1007/s00702-004-0124-0.PubMedCrossRefGoogle Scholar
  66. Fox JH, Kama JA, Lieberman G, et al. Mechanisms of copper ion mediated Huntington’s disease progression. PLoS One. 2007;2:e334. doi: 10.1371/journal.pone.0000334.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Franchitto N, Gandia-Mailly P, Georges B, et al. Acute copper sulphate poisoning: a case report and literature review. Resuscitation. 2008;78:92–6. doi: 10.1016/j.resuscitation.2008.02.017.PubMedCrossRefGoogle Scholar
  68. Frelon S, Douki T, Favier A, Cadet J. Hydroxyl radical is not the main reactive species involved in the degradation of DNA bases by copper in the presence of hydrogen peroxide. Chem Res Toxicol. 2003;16:191–7. doi: 10.1021/tx025650q.PubMedCrossRefGoogle Scholar
  69. Fu X, Zhang Y, Jiang W, et al. Regulation of copper transport crossing brain barrier systems by CU-ATPases: effect of manganese exposure. Toxicol Sci. 2014;139:432–51. doi: 10.1093/toxsci/kfu048.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Fu S, Jiang W, Zheng W. Age-dependent increase of brain copper levels and expressions of copper regulatory proteins in the subventricular zone and choroid plexus. Front Mol Neurosci. 2015;8:1–10. doi: 10.3389/fnmol.2015.00022.CrossRefGoogle Scholar
  71. Gaetke LM, Chow-Johnson HS, Chow CK. Copper: toxicological relevance and mechanisms. Arch Toxicol. 2014;88:1929–38.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Gaier ED, Eipper BA, Mains RE. Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res. 2013;91:2–19.PubMedGoogle Scholar
  73. Gaier ED, Eipper BA, Mains RE. Pam heterozygous mice reveal essential role for Cu in amygdalar behavioral and synaptic function. Ann N Y Acad Sci. 2014a;1314:15–23. doi: 10.1111/nyas.12378.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gaier ED, Rodriguiz RM, Zhou J, et al. In vivo and in vitro analyses of amygdalar function reveal a role for copper. J Neurophysiol. 2014b;111:1927–39. doi: 10.1152/jn.00631.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Gasperini L, Meneghetti E, Pastore B, et al. Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation. Antioxid Redox Signal. 2015;22:772–84. doi: 10.1089/ars.2014.6032.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Georgieva S, Popov B, Petrov V. Genotoxic effects of copper sulfate in rabbits. Arch Biol Sci. 2013;65:963–7. doi: 10.2298/ABS1303963G.CrossRefGoogle Scholar
  77. Goldschmith A, Infante C, Leiva J, et al. Interference of chronically ingested copper in long-term potentiation (LTP) of rat hippocampus. Brain Res. 2005;1056:176–82. doi: 10.1016/j.brainres.2005.07.030.PubMedCrossRefGoogle Scholar
  78. Gu M, Cooper JM, Butler P, et al. Oxidative-phosphorylation defects in liver of patients with Wilson’s disease. Lancet. 2000;356:469–74. doi: 10.1016/S0140-6736(00)02556-3.PubMedCrossRefGoogle Scholar
  79. Gunther MR, Hanna PM, Mason RP, Cohen MS. Hydroxyl radical formation from cuprous ion and hydrogen peroxide: a spin-trapping study. Arch Biochem Biophys. 1995;316:515–22. doi: 10.1006/abbi.1995.1068.PubMedCrossRefGoogle Scholar
  80. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97:1634–58. doi: 10.1111/j.1471-4159.2006.03907.x.PubMedCrossRefGoogle Scholar
  81. Hands SL, Mason R, Sajjad MU, et al. Metallothioneins and copper metabolism are candidate therapeutic targets in Huntington’s disease. Biochem Soc Trans. 2010;38:552–558. doi: BST0380552 [pii]\r 10.1042/BST0380552.
  82. Hauck AK, Bernlohr DA. Oxidative stress and lipotoxicity. J Lipid Res. 2016:1–37. doi: 10.1194/jlr.R066597.
  83. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis – the p53 network. J Cell Sci. 2003;116:4077–85. doi: 10.1242/jcs.00739.PubMedCrossRefGoogle Scholar
  84. Haywood S, Paris J, Ryvar R, Botteron C. Brain copper elevation and neurological changes in North Ronaldsay sheep: a model for neurodegenerative disease? J Comp Pathol. 2008;139:252–5. doi: 10.1016/j.jcpa.2008.06.008.PubMedCrossRefGoogle Scholar
  85. Healy J, Tipton K. Ceruloplasmin and what it might do. J Neural Transm. 2007;114:777–81. doi: 10.1007/s00702-007-0687-7.PubMedCrossRefGoogle Scholar
  86. Hegde ML, Hegde PM, Holthauzen LMF, et al. Specific inhibition of NEIL-initiated repair of oxidized base damage in human genome by copper and iron: potential etiological linkage to neurodegenerative diseases. J Biol Chem. 2010;285:28812–25. doi: 10.1074/jbc.M110.126664.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hegde ML, Hegde PM, Rao KS, Mitra S. Oxidative genome damage and its repair in neurodegenerative diseases: function of transition metals as a double-edged sword. J Alzheimers Dis. 2011;24:183–98.PubMedPubMedCentralGoogle Scholar
  88. Hodgkinson VL, Zhu S, Wang Y, et al. Autonomous requirements of the Menkes disease protein in the nervous system. Am J Physiol Cell Physiol. 2015;309:C660–8. doi: 10.1152/ajpcell.00130.2015.PubMedPubMedCentralGoogle Scholar
  89. Hopt A, Korte S, Fink H, et al. Methods for studying synaptosomal copper release. J Neurosci Methods. 2003;128:159–72. doi: 10.1016/S0165-0270(03)00173-0.PubMedCrossRefGoogle Scholar
  90. Horoupian D, Sternlieb I, Scheinberg I. Neuropathological findings in penicillamine-treated patients with Wilson’s disease. Clin Neuropathol. 1988;7:62–7.PubMedGoogle Scholar
  91. Hung LW, Villemagne VL, Cheng L, et al. The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson’s disease. J Exp Med. 2012;209:837–54. doi: 10.1084/jem.20112285.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Huster D, Purnat TD, Burkhead JL, et al. High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J Biol Chem. 2007;282:8343–55. doi: 10.1074/jbc.M607496200.PubMedCrossRefGoogle Scholar
  93. Ivask A, Titma T, Visnapuu M, et al. Toxicity of 11 metal oxide nanoparticles to three mammalian cell types in vitro. Curr Top Med Chem. 2015;15:1914–29. doi: 10.2174/1568026615666150506150109.PubMedCrossRefGoogle Scholar
  94. James SA, Volitakis I, Adlard PA, et al. Elevated labile Cu is associated with oxidative pathology in Alzheimer disease. Free Radic Biol Med. 2012;52:298–302. doi: 10.1016/j.freeradbiomed.2011.10.446.
  95. Javadov S, Kuznetsov A. Mitochondrial permeability transition and cell death: the role of cyclophilin D. Front Physiol. 2013; doi: 10.3389/fphys.2013.00076.
  96. Jing X, Park JH, Peters TM, Thorne PS. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment. Toxicol Vitr. 2015;29:502–11. doi: 10.1016/j.tiv.2014.12.023.CrossRefGoogle Scholar
  97. Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010;345:91–104.PubMedCrossRefGoogle Scholar
  98. Joshi A, Rastedt W, Faber K, et al. Uptake and toxicity of copper oxide nanoparticles in C6 glioma cells. Neurochem Res 2016;41:3004–19.doi: 10.1007/s11064-016-2020-z.
  99. Kaler SG. Diagnosis and therapy of Menkes syndrome, a genetic form of copper deficiency. Am J Clin Nutr. 1998;67:1029S–34S.PubMedGoogle Scholar
  100. Kaler SG. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol. 2011;7:15–29. doi: 10.1038/nrneurol.2010.180.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Kaler SG. Inborn errors of copper metabolism. Handb Clin Neurol. 2013;113:1745–54. doi: 10.1016/B978-0-444-59565-2.00045-9.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Kardos J, Kovacs I, Hajos F, et al. Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci Lett. 1989;103:139–44. doi: 10.1016/0304-3940(89)90565-X.PubMedCrossRefGoogle Scholar
  103. Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21:1726–32. doi: 10.1021/tx800064j.PubMedCrossRefGoogle Scholar
  104. Kessler H, Bayer TA, Bach D, et al. Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. J Neural Transm. 2008;115:1181–7. doi: 10.1007/s00702-008-0080-1.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Kettler K, Veltman K, van de Meent D, et al. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem. 2014;33:481–92. doi: 10.1002/etc.2470.PubMedCrossRefGoogle Scholar
  106. Kidane TZ, Farhad R, Lee KJ, et al. Uptake of copper from plasma proteins in cells where expression of CTR1 has been modulated. Biometals. 2012;25:697–709. doi: 10.1007/s10534-012-9528-8.PubMedCrossRefGoogle Scholar
  107. Kim H, Son H-Y, Bailey SM, Lee J. Deletion of hepatic Ctr1 reveals its function in copper acquisition and compensatory mechanisms for copper homeostasis. Am J Physiol Gastrointest Liver Physiol. 2009;296:G356–64. doi: 10.1152/ajpgi.90632.2008.PubMedCrossRefGoogle Scholar
  108. Kim JS, Peters TM, O’Shaughnessy PT, et al. Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials. Toxicol Vitr. 2013;27:164–73. doi: 10.1016/j.tiv.2012.08.030.CrossRefGoogle Scholar
  109. Kimura E, Kawano Y, Todo H, et al. Measurement of skin permeation/penetration of nanoparticles for their safety evaluation. Biol Pharm Bull. 2012;35:1476–86. doi: 10.1248/bpb.b12-00103.PubMedCrossRefGoogle Scholar
  110. Kirschnek S, Paris F, Weller M, et al. CD95-mediated apoptosis in vivo involves acid sphingomyelinase. J Biol Chem. 2000;275:27316–23. doi: 10.1074/jbc.M002957200.PubMedGoogle Scholar
  111. Klinman JP. Mechanisms whereby mononuclear copper proteins functionalize organic substrates. Chem Rev. 1996;96:2541–62. doi: 10.1021/cr950047g.PubMedCrossRefGoogle Scholar
  112. Klinman JP. The copper-enzyme family of dopamine beta-monooxygenase and peptidylglycine alpha-hydroxylating monooxygenase: resolving the chemical pathway for substrate hydroxylation. J Biol Chem. 2006;281:3013–6.PubMedCrossRefGoogle Scholar
  113. Kodama H. Recent developments in Menkes disease. J Inherit Metab Dis. 1993;16:791–9. doi: 10.1007/BF00711911.PubMedCrossRefGoogle Scholar
  114. Kodama H, Fujisawa C, Bhadhprasit W. Pathology, clinical features and treatments of congenital copper metabolic disorders – focus on neurologic aspects. Brain and Development. 2011;33:243–51. doi: 10.1016/j.braindev.2010.10.021.PubMedCrossRefGoogle Scholar
  115. Koeppen AH, Ramirez RL, Yu D, et al. Friedreich’s ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus. Cerebellum. 2012;11:845–60. doi: 10.1007/s12311-012-0383-5.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Krebs N, Langkammer C, Goessler W, et al. Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry. J Trace Elem Med Biol. 2014;28:1–7. doi: 10.1016/j.jtemb.2013.09.006.PubMedCrossRefGoogle Scholar
  117. Kreyling WG, Semmler M, Erbe F, et al. Translocation of ultrafine insoluble iridium particles fromm lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Heal Part A. 2002;65:1513–30. doi: 10.1080/00984100290071649.CrossRefGoogle Scholar
  118. Krstić DZ, Krinulović K, Vasić VM. Inhibition of Na+/K+-ATPase and Mg2+-ATPase by metal ions and prevention and recovery of inhibited activities by chelators. J Enzyme Inhib Med Chem. 2005;20:469–76. doi: 10.1080/14756360500213280.PubMedCrossRefGoogle Scholar
  119. Kuo Y-M, Gybina AA, Pyatskowit JW, et al. Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J Nutr. 2006;136:21–6. doi: 136/1/21 [pii]PubMedPubMedCentralGoogle Scholar
  120. Lakshmi Priya MD, Geetha A. Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res. 2011;142:148–58. doi: 10.1007/s12011-010-8766-2.PubMedCrossRefGoogle Scholar
  121. Lang PA, Schenck M, Nicolay JP, et al. Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med. 2007;13:164–70. doi: 10.1038/nm1539.PubMedCrossRefGoogle Scholar
  122. Leary SC, Winge DR, Cobine PA. “Pulling the plug” on cellular copper: the role of mitochondria in copper export. Biochim Biophys Acta, Mol Cell Res. 2009;1793:146–53. doi: 10.1016/j.bbamcr.2008.05.002.PubMedCrossRefGoogle Scholar
  123. Lech T, Sadlik JK. Copper concentration in body tissues and fluids in normal subjects of southern Poland. Biol Trace Elem Res. 2007;118:10–5. doi: 10.1007/s12011-007-0014-z.PubMedCrossRefGoogle Scholar
  124. Lee J, Prohaska JR, Thiele DJ. Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci U S A. 2001;98:6842–7. doi: 10.1073/pnas.111058698.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Lee J, Pena MMO, Nose Y, Thiele DJ. Biochemical characterization of the human copper transporter Ctr1. J Biol Chem. 2002a;277:4380–7. doi: 10.1074/jbc.M104728200.PubMedCrossRefGoogle Scholar
  126. Lee J, Petris MJ, Thiele DJ. Characterization of mouse embryonic cells deficient in the Ctr1 high affinity copper transporter: identification of a Ctr1-independent copper transport system. J Biol Chem. 2002b;277:40253–9. doi: 10.1074/jbc.M208002200.PubMedCrossRefGoogle Scholar
  127. Leiva J, Palestini M, Infante C, et al. Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze. Brain Res. 2009;1256:69–75. doi: 10.1016/j.brainres.2008.12.041.PubMedCrossRefGoogle Scholar
  128. Lenartowicz M, Krzeptowski W, Lipiński P, et al. Mottled mice and non-mammalian models of Menkes disease. Front Mol Neurosci. 2015;8:1–18. doi: 10.3389/fnmol.2015.00072.CrossRefGoogle Scholar
  129. Letelier ME, Lepe AM, Faúndez M, et al. Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Chem Biol Interact. 2005;151:71–82. doi: 10.1016/j.cbi.2004.12.004.PubMedCrossRefGoogle Scholar
  130. Letelier ME, Martinez M, Gonzalez-Lira V, et al. Inhibition of cytosolic glutathione S-transferase activity from rat liver by copper. Chem Biol Interact. 2006;164:39–48. doi: 10.1016/j.cbi.2006.08.013.PubMedCrossRefGoogle Scholar
  131. Lévay G, Ye Q, Bodell WJ. Formation of DNA adducts and oxidative base damage by copper mediated oxidation of dopamine and 6-hydroxydopamine. Exp Neurol. 1997;146:570–4. doi: 10.1006/exnr.1997.6560.PubMedCrossRefGoogle Scholar
  132. Levy D, Ronemus M, Yamrom B, et al. Rare de novo and transmitted copy-numbervariation in autistic spectrum disorders. Neuron. 2011;70:886–97. doi: 10.1016/j.neuron.2011.05.015.PubMedCrossRefGoogle Scholar
  133. Lewińska-Preis L, Jabłońska M, Fabiańska MJ, Kita A. Bioelements and mineral matter in human livers from the highly industrialized region of the upper Silesia Coal Basin (Poland). Environ Geochem Health. 2011;33:595–611. doi: 10.1007/s10653-011-9373-7.PubMedCrossRefGoogle Scholar
  134. Li J, Lock RAC, Klaren PHM, et al. Kinetics of Cu2+ inhibition of Na+/K+-ATPase. Toxicol Lett. 1996;87:31–8. doi: 10.1016/0378-4274(96)03696-X.PubMedCrossRefGoogle Scholar
  135. Li F, Zhou X, Zhu J, et al. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles. BMC Biotechnol. 2007;7:66. doi: 10.1186/1472-6750-7-66.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Liao M, Liu H. Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ Toxicol Pharmacol. 2012;34:67–80. doi: 10.1016/j.etap.2011.05.014.PubMedCrossRefGoogle Scholar
  137. Lin C, Zhang Z, Wang T, et al. Copper uptake by DMT1: a compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells. Metallomics. 2015;7:1285–9. doi: 10.1039/c5mt00097a.PubMedCrossRefGoogle Scholar
  138. Linder MC, Hazegh-Azam M. Copper biochemistry and molecular biology. Am J Clin Nutr. 1996;63:797S–811S.PubMedGoogle Scholar
  139. Litwin T, Gromadzka G, Szpak GM, et al. Brain metal accumulation in Wilson’s disease. J Neurol Sci. 2013;329:55–8. doi: 10.1016/j.jns.2013.03.021.PubMedCrossRefGoogle Scholar
  140. Liu Z, Liu S, Ren G, et al. Nano-CuO inhibited voltage-gated sodium current of hippocampal CA1 neurons via reactive oxygen species but independent from G-proteins pathway. J Appl Toxicol. 2011;31:439–45. doi: 10.1002/jat.1611.PubMedCrossRefGoogle Scholar
  141. Liu J, Chakraborty S, Hosseinzadeh P, et al. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev. 2014;114:4366–9.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Llanos RM, Michalczyk AA, Freestone DJ, et al. Copper transport during lactation in transgenic mice expressing the human ATP7A protein. Biochem Biophys Res Commun. 2008;372:613–7. doi: 10.1016/j.bbrc.2008.05.123.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Loeffler DA, LeWitt PA, Juneau PL, et al. Increased regional brain concentrations of ceruloplasmin in neurodegenerative disorders. Brain Res. 1996;738:265–74. doi: 10.1016/S0006-8993(96)00782-2.PubMedCrossRefGoogle Scholar
  144. Lorincz MT. Neurologic Wilson’s disease. Ann N Y Acad Sci. 2010;1184:173–87. doi: 10.1111/j.1749-6632.2009.05109.x.PubMedCrossRefGoogle Scholar
  145. Lovell MA, Robertson JD, Teesdale WJ, et al. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci. 1998;158:47–52. doi: 10.1016/S0022-510X(98)00092-6.PubMedCrossRefGoogle Scholar
  146. Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006;63:2304–16. doi: 10.1007/s00018-006-6149-9.PubMedCrossRefGoogle Scholar
  147. Ma Y, Cao L, Kawabata T, et al. Cupric nitrilotriacetate induces oxidative DNA damage and apoptosis in human leukemia HL-60 cells. Free Radic Biol Med. 1998;25:568–75.PubMedCrossRefGoogle Scholar
  148. Marcus DL, Thomas C, Rodriguez C, et al. Increased peroxidation and reduced antioxidant enzyme activity in Alzheimer’s disease. Exp Neurol. 1998;150:40–4. doi: 10.1006/exnr.1997.6750.PubMedCrossRefGoogle Scholar
  149. Matheou CJ, Younan ND, Viles JH. Cu2+ accentuates distinct misfolding of Aβ1–40 and Aβ1–42 peptides, and potentiates membrane disruption. Biochem J. 2015;466:233–42. doi: 10.1042/BJ20141168.PubMedCrossRefGoogle Scholar
  150. Maurer I, Zierz S, Möller HJ. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging. 2000;21:455–62. doi: 10.1016/S0197-4580(00)00112-3.PubMedCrossRefGoogle Scholar
  151. Maxfield AB, Heaton DN, Winge DR. Cox17 is functional when tethered to the mitochondrial inner membrane. J Biol Chem. 2004;279:5072–80. doi: 10.1074/jbc.M311772200.PubMedCrossRefGoogle Scholar
  152. Maynard CJ, Cappai R, Volitakis I, et al. Overexpression of Alzheimer’s disease amyloid-β opposes the age-dependent elevations of brain copper and iron. J Biol Chem. 2002;277:44670–6. doi: 10.1074/jbc.M204379200.PubMedCrossRefGoogle Scholar
  153. McFarland KN, Cha J-HJ. Molecular biology of Huntington’s disease. In: Handbook of clinical neurology. 2011. pp 25–81.Google Scholar
  154. Meenakshi-Sundaram S, Mahadevan A, Taly AB, et al. Wilson’s disease: a clinico-neuropathological autopsy study. J Clin Neurosci. 2008;15:409–17. doi: 10.1016/j.jocn.2006.07.017.PubMedCrossRefGoogle Scholar
  155. Michalczyk A, Bastow E, Greenough M, et al. ATP7B expression in human breast epithelial cells is mediated by lactational hormones. J Histochem Cytochem. 2008;56:389–99. doi: 10.1369/jhc.7A7300.2008.PubMedPubMedCentralCrossRefGoogle Scholar
  156. Mikol J, Vital C, Wassef M, et al. Extensive cortico-subcortical lesions in Wilson’s disease: Clinico-pathological study of two cases. Acta Neuropathol. 2005;110:451–8. doi: 10.1007/s00401-005-1061-1.PubMedCrossRefGoogle Scholar
  157. Mitra J, Guerrero EN, Hegde PM, et al. New perspectives on oxidized genome damage and repair inhibition by pro-oxidant metals in neurological diseases. Biomol Ther. 2014;4:678–703. doi: 10.3390/biom4030678.Google Scholar
  158. Monnot AD, Behl M, Ho S, Zheng W. Regulation of brain copper homeostasis by the brain barrier systems: effects of Fe-overload and Fe-deficiency. Toxicol Appl Pharmacol. 2011;256:249–57. doi: 10.1016/j.taap.2011.02.003.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Monnot AD, Zheng G, Zheng W. Mechanism of copper transport at the blood-cerebrospinal fluid barrier: influence of iron deficiency in an in vitro model. Exp Biol Med (Maywood). 2012;237:327–33. doi: 10.1258/ebm.2011.011170.CrossRefGoogle Scholar
  160. Monty J-FF, Llanos RM, Mercer JFB, et al. Copper exposure induces trafficking of the Menkes protein in intestinal epithelium of ATP7A transgenic mice. Biochem J. 2005;135:2762–766. doi:135/12/2762 [pii].Google Scholar
  161. Moriya M, Ho Y-H, Grana A, et al. Copper is taken up efficiently from albumin and α2-macroglobulin by cultured human cells by more than one mechanism. Am J Phys Cell Phys. 2008;295:C708–21. doi: 10.1152/ajpcell.00029.2008.
  162. Mossakowski MJ, Renkawek K, Kraśnicka Z, et al. Morphology and histochemistry of Wilsonian and hepatogenic gliopathy in tissue culture. Acta Neuropathol. 1970;16:1–16. doi: 10.1007/BF00686958.PubMedCrossRefGoogle Scholar
  163. Mufti AR, Burstein E, Csomos RA, et al. XIAP is a copper binding protein deregulated in Wilson’s disease and other copper toxicosis disorders. Mol Cell. 2006;21:775–85. doi: 10.1016/j.molcel.2006.01.033.PubMedCrossRefGoogle Scholar
  164. Mufti AR, Burstein E, Duckett CS. XIAP: cell death regulation meets copper homeostasis. Arch Biochem Biophys. 2007;463:168–74. doi: 10.1016/ Scholar
  165. Murphy CM, Wilson CE, Robertson DM, et al. Autism spectrum disorder in adults: diagnosis, management, and health services development. Neuropsychiatr Dis Treat. 2016;12:1669–86. doi: 10.2147/NDT.S65455.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Narayanan VS, Fitch CA, Levenson CW. Tumor suppressor protein p53 mRNA and subcellular localization are altered by changes in cellular copper in human Hep G2 cells. J Nutr. 2001;131:1427–32.PubMedGoogle Scholar
  167. Nedeljković N, Horvat A. One-step bioluminescence ATPase assay for the evaluation of neurotoxic effects of metal ions. Monatshefte fur Chemie. 2007;138:253–60. doi: 10.1007/s00706-007-0595-4.CrossRefGoogle Scholar
  168. Nguyen T, Hamby A, Massa SM. Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A. 2005;102:11840–5. doi: 10.1073/pnas.0502177102.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Nooijen JL, De Groot CJ, Van den Hamer CJ, et al. Trace element studies in three patients and a fetus with Menkes’ disease. Effect of copper therapy. Pediatr Res. 1981;15:284–9.PubMedCrossRefGoogle Scholar
  170. Nose Y, Kim BE, Thiele DJ. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab. 2006;4:235–44. doi: 10.1016/j.cmet.2006.08.009.PubMedCrossRefGoogle Scholar
  171. Nose Y, Wood LK, Kim BE, et al. Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J Biol Chem. 2010;285:32385–92. doi: 10.1074/jbc.M110.143826.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Nyasae L, Bustos R, Braiterman L, et al. Dynamics of endogenous ATP7A (Menkes protein) in intestinal epithelial cells: copper-dependent redistribution between two intracellular sites. Am J Physiol Gastrointest Liver Physiol. 2007;292:G1181–94. doi: 10.1152/ajpgi.00472.2006.PubMedCrossRefGoogle Scholar
  173. Oberdörster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437–45. doi: 10.1080/08958370490439597.PubMedCrossRefGoogle Scholar
  174. Olivares C, Solano F. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res. 2009;22:750–60. doi: 10.1111/j.1755-148X.2009.00636.x.PubMedCrossRefGoogle Scholar
  175. Olusola A, Obodozie O, Nssien M, et al. Concentrations of copper, iron, and zinc in the major organs of the wistar albino and wild black rats: a comparative study. Biol Trace Elem Res. 2004;98:265–74. doi: 10.1385/BTER:98:3:265.PubMedCrossRefGoogle Scholar
  176. Pamp K, Bramey T, Kirsch M, et al. NAD(H) enhances the Cu(II)-mediated inactivation of lactate dehydrogenase by increasing the accessibility of sulfhydryl groups. Free Radic Res. 2005;39:31–40. doi: 10.1080/10715760400023671.PubMedCrossRefGoogle Scholar
  177. Parpura V, Heneka MT, Montana V, et al. Glial cells in (patho)physiology. J Neurochem. 2012;121:4–27. doi: 10.1111/j.1471-4159.2012.07664.x.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Perreault F, Pedroso Melegari S, Henning da Costa C, et al. Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Sci Total Environ. 2012;441:117–24. doi: 10.1016/j.scitotenv.2012.09.065.PubMedCrossRefGoogle Scholar
  179. Perry JJP, Shin DS, Getzoff ED, Tainer JA. The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta Proteins Proteomics. 2010;1804:245–62. doi: 10.1016/j.bbapap.2009.11.004.CrossRefGoogle Scholar
  180. Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res. 2014;39:1648–60.PubMedCrossRefGoogle Scholar
  181. Phatak VM, Muller PAJ. Metal toxicity and the p53 protein: an intimate relationship. Toxicol Res. 2015;4:576–91. doi: 10.1039/C4TX00117F.CrossRefGoogle Scholar
  182. Prá D, Franke SIR, Giulian R, et al. Genotoxicity and mutagenicity of iron and copper in mice. Biometals. 2008;21:289–97. doi: 10.1007/s10534-007-9118-3.PubMedCrossRefGoogle Scholar
  183. Prabhu BM, Ali SF, Murdock RC, et al. Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology. 2010;4:150–60. doi: 10.3109/17435390903337693.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Prakash A, Dhaliwal GK, Kumar P, Majeed ABA. Brain biometals and Alzheimer’s disease – boon or bane? Int J Neurosci. 2016;7454:1–34. doi: 10.3109/00207454.2016.1174118.Google Scholar
  185. Privalova LI, Katsnelson BA, Loginova NV, et al. Subchronic toxicity of copper oxide nanoparticles and its attenuation with the help of a combination of bioprotectors. Int J Mol Sci. 2014;15:12379–406. doi: 10.3390/ijms150712379.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Prudovsky I, Tarantini F, Landriscina M, et al. Secretion without Golgi. J Cell Biochem. 2008;103:1327–43. doi: 10.1002/jcb.21513.PubMedPubMedCentralCrossRefGoogle Scholar
  187. Pujol J, Fenoll R, Macià D, et al. Airborne copper exposure in school environments associated with poorer motor performance and altered basal ganglia. Brain Behav. 2016;e00467. doi: 10.1002/brb3.467.
  188. Qian Y, Tiffany-castiglioni E, Welsh J, Harris ED. Copper efflux from murine microvascular cells requires expression of the Menkes Cu-ATPase. J Nutr. 1998;128:1276–82.PubMedGoogle Scholar
  189. Rae TD, Schmidt PJ, Pufahl RA, et al. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science. 1999;284:805–8. doi: 10.1126/science.284.5415.805.PubMedCrossRefGoogle Scholar
  190. Ralle M, Huster D, Vogt S, et al. Wilson disease at a single cell level: intracellular copper trafficking activates compartment-specific responses in hepatocytes. J Biol Chem. 2010;285:30875–83. doi: 10.1074/jbc.M110.114447.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Ramos P, Santos A, Pinto NR, et al. Anatomical region differences and age-related changes in copper, zinc, and manganese levels in the human brain. Biol Trace Elem Res. 2014;161:190–201. doi: 10.1007/s12011-014-0093-6.PubMedCrossRefGoogle Scholar
  192. Reddy PVB, Rao KVR, Norenberg MD. The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes. Lab Investig. 2008;88:816–30. doi: 10.1038/labinvest.2008.49.PubMedCrossRefGoogle Scholar
  193. Rembach A, Hare DJ, Lind M, et al. Decreased copper in Alzheimer’s disease brain is predominantly in the soluble extractable fraction. Int J Alzheimers Dis. 2013;2013(1–2) doi: 10.1155/2013/623241.
  194. Ristić AJ, Sokić D, Baščarević V, et al. Metals and electrolytes in sclerotic hippocampi in patients with drug-resistant mesial temporal lobe epilepsy. Epilepsia. 2014;55:e34–7. doi: 10.1111/epi.12593.PubMedCrossRefGoogle Scholar
  195. Rivera-Mancia S, Perez-Neri I, Rios C, et al. The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact. 2010;186:184–99. doi: 10.1016/j.cbi.2010.04.010.PubMedCrossRefGoogle Scholar
  196. Roberts BR, Ryan TM, Bush AI, et al. The role of metallobiology and amyloid-β peptides in Alzheimer’s disease. J Neurochem. 2012;120:149–66. doi: 10.1111/j.1471-4159.2011.07500.x.
  197. Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem. 2010;79:537–62. doi: 10.1146/annurev-biochem-030409-143539.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Roy DN, Mandal S, Sen G, Biswas T. Superoxide anion mediated mitochondrial dysfunction leads to hepatocyte apoptosis preferentially in the periportal region during copper toxicity in rats. Chem Biol Interact. 2009;182:136–47. doi: 10.1016/j.cbi.2009.08.014.PubMedCrossRefGoogle Scholar
  199. Russo AJ, de Vito R. Analysis of copper and zinc plasma concentration and the efficacy of zinc therapy in individuals with Asperger’s syndrome, pervasive developmental disorder not otherwise specified (PDD-NOS) and autism. Biomark Insights. 2011;6:127–33. doi: 10.4137/BMI.S7286.PubMedPubMedCentralCrossRefGoogle Scholar
  200. Sagripanti JL, Kraemer KH. Site-specific oxidative DNA damage at polyguanosines produced by copper plus hydrogen peroxide. J Biol Chem. 1989;264:1729–34.PubMedGoogle Scholar
  201. Salazar-Weber NL, Smith JP. Copper inhibits NMDA receptor-independent LTP and modulates the paired-pulse ratio after LTP in mouse hippocampal slices. Int J Alzheimers Dis. 2011;2011:864753. doi: 10.4061/2011/864753.PubMedPubMedCentralGoogle Scholar
  202. Sauer SW, Merle U, Opp S, et al. Severe dysfunction of respiratory chain and cholesterol metabolism in Atp7b−/− mice as a model for Wilson disease. Biochim Biophys Acta Mol basis Dis. 1812;2011:1607–15. doi: 10.1016/j.bbadis.2011.08.011.
  203. Scheiber IF, Dringen R. Astrocyte functions in the copper homeostasis of the brain. Neurochem Int. 2013;62:556–65. doi: 10.1016/j.neuint.2012.08.017.PubMedCrossRefGoogle Scholar
  204. Scheiber I, Dringen R, Mercer JFB. Copper: effects of deficiency and overload. Met Ions Life Sci. 2013;13:359–87. doi: 10.1007/978-94-007-7500-8-11.PubMedCrossRefGoogle Scholar
  205. Scheiber IF, Mercer JFB, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116:33–57. doi: 10.1016/j.pneurobio.2014.01.002.PubMedCrossRefGoogle Scholar
  206. Schlief ML, Gitlin JD. Copper homeostasis in the CNS: a novel link between the NMDA receptor and copper homeostasis in the hippocampus. Mol Neurobiol. 2006;33:81–90. doi: 10.1385/MN:33:2:81.PubMedCrossRefGoogle Scholar
  207. Schlief ML, Craig AM, Gitlin JD. NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci. 2005;25:239–46. doi: 10.1523/JNEUROSCI.3699-04.2005.PubMedCrossRefGoogle Scholar
  208. Schlief ML, West T, Craig AM, et al. Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc Natl Acad Sci. 2006;103:14919–24. doi: 10.1073/pnas.0605390103.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Schwerdtle T, Hamann I, Jahnke G, et al. Impact of copper on the induction and repair of oxidative DNA damage, poly(ADP-ribosyl)ation and PARP-1 activity. Mol Nutr Food Res. 2007;51:201–10. doi: 10.1002/mnfr.200600107.PubMedCrossRefGoogle Scholar
  210. Sharma HS, Sharma A. Neurotoxicity of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets. 2012;11:65–80. doi: 10.2174/187152712799960817.PubMedCrossRefGoogle Scholar
  211. Sheline CT, Choi DW. Cu2+ toxicity inhibition of mitochondrial dehydrogenases in vitro and in vivo. Ann Neurol. 2004;55:645–53. doi: 10.1002/ana.20047.
  212. Sokol RJ, Devereaux M, Mierau GW, et al. Oxidant injury to hepatic mitochondrial lipids in rats with dietary copper overload. Modif Vitam E Def Gastroenterol. 1990;99:1061–71.Google Scholar
  213. Sokol RJ, Devereaux MW, O’Brien K, et al. Abnormal hepatic mitochondrial respiration and cytochrome C oxidase activity in rats with long-term copper overload. Gastroenterology. 1993;105:178–87.PubMedCrossRefGoogle Scholar
  214. Sokol RJ, Twedt D, McKim JM Jr, et al. Oxidant injury to hepatic mitochondria in patients with Wilson’s disease and Bedlington terriers with copper toxicosis. Gastroenterology. 1994;107:1788–98.PubMedCrossRefGoogle Scholar
  215. Spencer WA, Jeyabalan J, Kichambre S, Gupta RC. Oxidatively generated DNA damage after Cu(II) catalysis of dopamine and related catecholamine neurotransmitters and neurotoxins: role of reactive oxygen species. Free Radic Biol Med. 2011;50:139–47. doi: 10.1016/j.freeradbiomed.2010.10.693.PubMedCrossRefGoogle Scholar
  216. Strand S, Hofmann WJ, Grambihler A, et al. Hepatic failure and liver cell damage in acute Wilson’s disease involve CD95 (APO-1/Fas) mediated apoptosis. Nat Med. 1998;4:588–93. doi: 10.1038/nm0598-588.PubMedCrossRefGoogle Scholar
  217. Strozyk D, Launer LJ, Adlard PA, et al. Zinc and copper modulate Alzheimer Aβ levels in human cerebrospinal fluid. Neurobiol Aging. 2009;30:1069–77. doi: 10.1016/j.neurobiolaging.2007.10.012.
  218. Stuerenburg HJ. CSF copper concentrations, blood-brain barrier function, and coeruloplasmin synthesis during the treatment of Wilson’s disease. J Neural Transm. 2000;107:321–9. doi: 10.1007/s007020050026.PubMedCrossRefGoogle Scholar
  219. Szerdahelyi P, Kása P. Histochemical demonstration of copper in normal rat brain and spinal cord. Histochem Cell Biol. 1986;85:341–7.Google Scholar
  220. Szymczak W, Menzel N, Keck L. Emission of ultrafine copper particles by universal motors controlled by phase angle modulation. J Aerosol Sci. 2007;38:520–31. doi: 10.1016/j.jaerosci.2007.03.002.CrossRefGoogle Scholar
  221. Tallaksen-Greene SJ, Janiszewska A, Benton K, et al. Evaluation of tetrathiomolybdate in the R6/2 model of Huntington disease. Neurosci Lett. 2009;452:60–2. doi: 10.1016/j.neulet.2009.01.040.PubMedCrossRefGoogle Scholar
  222. Tarohda T, Yamamoto M, Amamo R. Regional distribution of manganese, iron, copper, and zinc in the rat brain during development. Anal Bioanal Chem. 2004;380:240–6. doi: 10.1007/s00216-004-2697-8.PubMedCrossRefGoogle Scholar
  223. Thackray AM, Knight R, Haswell SJ, et al. Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem J. 2002;362:253–8. doi: 10.1042/0264-6021:3620253.PubMedPubMedCentralCrossRefGoogle Scholar
  224. Thomas B, Flint Beal M. Parkinson’s disease. Hum Mol Genet. 2007;16:R183–94. doi: 10.1093/hmg/ddm159.PubMedCrossRefGoogle Scholar
  225. Timmers HJLM, Deinum J, Wevers RA, JWM L. Congenital dopamine-β-hydroxylase deficiency in humans. Ann N Y Acad Sci. 2004;1018:520–3. doi: 10.1196/annals.1296.064.
  226. Tkeshelashvili LK, McBride T, Spence K, Loeb LA. Mutation spectrum of copper-induced DNA damage. J Biol Chem. 1991;266:6401–6.PubMedGoogle Scholar
  227. Urso E, Maffia M. Behind the link between copper and angiogenesis: established mechanisms and an overview on the role of vascular copper transport systems. J Vasc Res. 2015;52:172–96. doi: 10.1159/000438485.PubMedCrossRefGoogle Scholar
  228. Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein: a possible molecular link between parkinson’s disease and heavy metal exposure. J Biol Chem. 2001;276:44284–96. doi: 10.1074/jbc.M105343200.PubMedCrossRefGoogle Scholar
  229. VanLandingham JW, Fitch CA, Levenson CW. Zinc inhibits the nuclear translocation of the tumor suppressor protein p53 and protects cultured human neurons from copper-induced neurotoxicity. NeuroMolecular Med. 2002;1:171–82. doi: 10.1385/NMM:1:3:171.PubMedCrossRefGoogle Scholar
  230. Vasić V, Jovanović D, Krstić D, et al. Prevention and recovery of CuSO4-induced inhibition of Na+/K+-ATPase and Mg2+-ATPase in rat brain synaptosomes by EDTA. Toxicol Lett. 1999;110:95–104. doi: 10.1016/S0378-4274(99)00144-7.
  231. Vest KE, Leary SC, Winge DR, Cobine PA. Copper import into the mitochondrial matrix in Saccharomyces cerevisiae is mediated by Pic2, a mitochondrial carrier family protein. J Biol Chem. 2013;288:23884–92. doi: 10.1074/jbc.M113.470674.PubMedPubMedCentralCrossRefGoogle Scholar
  232. Voss K, Harris C, Ralle M, et al. Modulation of tau phosphorylation by environmental copper. Transl Neurodegener. 2014;3:24. doi: 10.1186/2047-9158-3-24.PubMedPubMedCentralCrossRefGoogle Scholar
  233. Vujisić L, Krstić D, Krinulović K, Vasić V. The influence of transition and heavy metal ions on ATP-ases activity in rat synaptic plasma membranes. J Serbian Chem Soc. 2004;69:541–7. doi: 10.2298/JSC0407541V.CrossRefGoogle Scholar
  234. Waggoner DJ, Drisaldi B, Bartnikas TB, et al. Brain copper content and cuproenzyme activity do not vary with prion protein expression level. J Biol Chem. 2000;275:7455–8. doi: 10.1074/jbc.275.11.7455.PubMedCrossRefGoogle Scholar
  235. Wakabayashi H, Koszelak ME, Mastri M, Fay PJ. Metal ion-independent association of factor VIII subunits and the roles of calcium and copper ions for cofactor activity and inter-subunit affinity. Biochemistry. 2001;40:10293–300. doi: 10.1021/bi010353q.PubMedCrossRefGoogle Scholar
  236. Wang X, Li GJ, Zheng W. Efflux of iron from the cerebrospinal fluid to the blood at the blood-CSF barrier: effect of manganese exposure. Exp Biol Med (Maywood). 2008;233:1561–71. doi: 10.3181/0803-RM-104.CrossRefGoogle Scholar
  237. Wang L-M, Becker JS, Wu Q, et al. Bioimaging of copper alterations in the aging mouse brain by autoradiography, laser ablation inductively coupled plasma mass spectrometry and immunohistochemistry. Metallomics. 2010;2:348–53. doi: 10.1039/c003875j.PubMedCrossRefGoogle Scholar
  238. Wang DB, Kinoshita C, Kinoshita Y, Morrison RS. P53 and mitochondrial function in neurons. Biochim Biophys Acta Mol basis Dis. 2014;1842:1186–97. doi: 10.1016/j.bbadis.2013.12.015.CrossRefGoogle Scholar
  239. Warren PJ, Earl CJ, Thompson RHS. The distribution of copper in human brain. Brain. 1960;83:709–17. doi: 10.1093/brain/83.4.709.PubMedCrossRefGoogle Scholar
  240. Whiteside JR, Box CL, McMillan TJ, Allinson SL. Cadmium and copper inhibit both DNA repair activities of polynucleotide kinase. DNA Repair (Amst). 2010;9:83–9. doi: 10.1016/j.dnarep.2009.11.004.CrossRefGoogle Scholar
  241. Willemse J, Van den Hamer CJ, Prins HW, Jonker PL. Menkes’ kinky hair disease. I. Comparison of classical and unusual clinical and biochemical features in two patients. Brain and Development. 1982;4:105–14.PubMedCrossRefGoogle Scholar
  242. Wilmarth PA, Short KK, Fiehn O, et al. A systems approach implicates nuclear receptor targeting in the Atp7b−/− mouse model of Wilson’s disease. Metallomics. 2012;4:660–8. doi: 10.1039/c2mt20017a.
  243. Wooton-Kee CR, Jain AK, Wagner M, et al. Elevated copper impairs hepatic nuclear receptor function in Wilson’s disease. J Clin Invest. 2015;125:3449–60. doi: 10.1172/JCI78991.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Xiao G, Fan Q, Wang X, Zhou B. Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci U S A. 2013;110:14995–5000. doi: 10.1073/pnas.1308535110.PubMedPubMedCentralCrossRefGoogle Scholar
  245. Xu LJ, Zhao JX, Zhang T, et al. In vitro study on influence of nano particles of CuO on CA1 pyramidal neurons of rat hippocampus potassium currents. Environ Toxicol. 2009;24:211–217. doi: 10.1002/Tox.20418.
  246. Yokohira M, Kuno T, Yamakawa K, et al. Lung toxicity of 16 fine particles on intratracheal instillation in a bioassay model using f344 male rats. Toxicol Pathol. 2008;36:620–31. doi: 10.1177/0192623308318214.PubMedCrossRefGoogle Scholar
  247. Yoshimura N, Kida K, Usutani S. Histochemical localization of copper in various organs of brindled mice after copper therapy. Pathol Int. 1995;45:10–8.PubMedCrossRefGoogle Scholar
  248. Youdim MBH, Grünblatt E, Mandel S. The copper chelator, D-penicillamine, does not attenuate MPTP induced dopamine depletion in mice. J Neural Transm. 2007;114:205–9. doi: 10.1007/s00702-006-0499-1.PubMedCrossRefGoogle Scholar
  249. Yu F, Gong P, Hu Z, et al. Cu(II) enhances the effect of Alzheimer’s amyloid-β peptide on microglial activation. J Neuroinflammation. 2015;12:122. doi: 10.1186/s12974-015-0343-3.PubMedPubMedCentralCrossRefGoogle Scholar
  250. Yurderi M, Bulut A, Ertas IE, et al. Supported copper-copper oxide nanoparticles as active, stable and low-cost catalyst in the methanolysis of ammonia-borane for chemical hydrogen storage. Appl Catal B Environ. 2015;165:169–75. doi: 10.1016/j.apcatb.2014.10.011.CrossRefGoogle Scholar
  251. Yurkova IL, Stuckert F, Kisel MA, et al. Formation of phosphatidic acid in stressed mitochondria. Arch Biochem Biophys. 2008;480:17–26. doi: 10.1016/ Scholar
  252. Yurkova IL, Arnhold J, Fitzl G, Huster D. Fragmentation of mitochondrial cardiolipin by copper ions in the Atp7b −/− mouse model of Wilson’s disease. Chem Phys Lipids. 2011;164:393–400. doi: 10.1016/j.chemphyslip.2011.05.006.
  253. Zatta P, Drago D, Zambenedetti P, et al. Accumulation of copper and other metal ions, and metallothionein I/II expression in the bovine brain as a function of aging. J Chem Neuroanat. 2008;36:1–5. doi: 10.1016/j.jchemneu.2008.02.008.PubMedCrossRefGoogle Scholar
  254. Zheng W, Monnot AD. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol Ther. 2012;133:177–88. doi: 10.1016/j.pharmthera.2011.10.006.PubMedCrossRefGoogle Scholar
  255. Zheng G, Chen J, Zheng W. Relative contribution of CTR1 and DMT1 in copper transport by the blood-CSF barrier: implication in manganese-induced neurotoxicity. Toxicol Appl Pharmacol. 2012;260:285–93. doi: 10.1016/j.taap.2012.03.006.PubMedPubMedCentralCrossRefGoogle Scholar
  256. Zimnicka AM, Maryon EB, Kaplan JH. Human copper transporter hCTR1 mediates basolateral uptake of copper into enterocytes: implications for copper homeostasis. J Biol Chem. 2007;282:26471–80. doi: 10.1074/jbc.M702653200.PubMedCrossRefGoogle Scholar
  257. Zimnicka AM, Ivy K, Kaplan JH. Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake. Am J Physiol Cell Physiol. 2011;300:C588–99. doi: 10.1152/ajpcell.00054.2010.PubMedCrossRefGoogle Scholar
  258. Zischka H, Lichtmannegger J, Schmitt S, et al. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest. 2011;121:1508–18. doi: 10.1172/JCI45401.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Felix Bulcke
    • 1
    • 2
  • Ralf Dringen
    • 1
    • 2
  • Ivo Florin Scheiber
    • 1
    • 2
    Email author
  1. 1.Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry)University of BremenBremenGermany
  2. 2.Center for Environmental Research and Sustainable TechnologyBremenGermany

Personalised recommendations