Copper and Alzheimer’s Disease

  • Zoe K. Mathys
  • Anthony R. WhiteEmail author
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 18)


Alzheimer’s disease (AD) is the most common form of adult neurode-generation and is characterised by progressive loss of cognitive function leading to death. The neuropathological hallmarks include extracellular amyloid plaque accumulation in affected regions of the brain, formation of intraneuronal neurofibrillary tangles, chronic neuroinflammation, oxidative stress, and abnormal biometal homeostasis. Of the latter, major changes in copper (Cu) levels and localisation have been identified in AD brain, with accumulation of Cu in amyloid deposits, together with deficiency of Cu in some brain regions. The amyloid precursor protein (APP) and the amyloid beta (Aβ) peptide both have Cu binding sites, and interaction with Cu can lead to potentially neurotoxic outcomes through generation of reactive oxygen species. In addition, AD patients have systemic changes to Cu metabolism, and altered Cu may also affect neuroinflammatory outcomes in AD. Although we still have much to learn about Cu homeostasis in AD patients and its role in disease aetiopathology, therapeutic approaches for regulating Cu levels and interactions with Cu-binding proteins in the brain are currently being developed. This review will examine how Cu is associated with pathological changes in the AD brain and how these may be targeted for therapeutic intervention.


Copper Alzheimer’s disease Ceruloplasmin Reactive oxygen species Amyloid precursor protein Tau Neuroinflammation Clioquinol PBT-2 


  1. Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, et al. Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ. Neuron. 2008;59(1):43–55.PubMedCrossRefGoogle Scholar
  2. Ahuja A, Dev K, Tanwar RS, Selwal KK, Tyagi PK. Copper mediated neurological disorder: visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J Trace Elem Med Biol. 2015;29:11–23.PubMedCrossRefGoogle Scholar
  3. Amaravadi R, Glerum DM, Tzagoloff A. Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum Genet. 1997;99(3):329–33.PubMedCrossRefGoogle Scholar
  4. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NME, Romano DM, et al. Dramatic aggregation of Alzheimer Aβ by Cu (II) is induced by conditions representing physiological acidosis. J Biol Chem. 1998;273(21):12817–26.PubMedCrossRefGoogle Scholar
  5. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, et al. Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem. 2000;75(3):1219–33.PubMedCrossRefGoogle Scholar
  6. Ayton S, Lei P, Bush AI. Biometals and their therapeutic implications in Alzheimer’s disease. Neurotherapeutics. 2015;12(1):109–20.PubMedCrossRefGoogle Scholar
  7. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet (London, England). 2011;377(9770):1019–31.CrossRefGoogle Scholar
  8. Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci. 2003;23(7):2665–74.PubMedGoogle Scholar
  9. Barbusiński K. Fenton reaction-controversy concerning the chemistry. Ecolog Chem Eng Sci. 2009;16(3):347–58.Google Scholar
  10. Barnham KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, et al. Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain a regulator of neuronal copper homeostasis. J Biol Chem. 2003;278(19):17401–7.PubMedCrossRefGoogle Scholar
  11. Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mavros C, et al. Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. FASEB J. 2004;18(12):1427–9.PubMedGoogle Scholar
  12. Bayer TA, Schäfer S, Simons A, Kemmling A, Kamer T, Tepests R, et al. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice. Proc Natl Acad Sci. 2003;100(24):14187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bucossi S, Ventriglia M, Panetta V, Salustri C, Pasqualetti P, Mariani S, et al. Copper in Alzheimer’s disease: a meta-analysis of serum,plasma, and cerebrospinal fluid studies. J Alzheimer’s Dis. 2011;24(1):175–85.Google Scholar
  14. Bush AI, Tanzi RE. Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics. 2008;5(3):421–32.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Buxbaum JD, Thinakaran G, Koliatsos V, O’Callahan J, Slunt HH, Price DL, et al. Alzheimer amyloid protein precursor in the rat hippocampus: transport and processing through the perforant path. J Neurosci. 1998;18(23):9629–37.PubMedGoogle Scholar
  16. Caragounis A, Du T, Filiz G, Laughton KM, Volitakis I, Sharples RA, et al. Differential modulation of Alzheimer’s disease amyloid beta-peptide accumulation by diverse classes of metal ligands. Biochem J. 2007;407(3):435–50.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cater MA, McInnes KT, Li Q-X, Volitakis I, La Fontaine S, Mercer JF, et al. Intracellular copper deficiency increases amyloid-β secretion by diverse mechanisms. Biochem J. 2008;412(1):141–52.PubMedCrossRefGoogle Scholar
  18. Ceccom J, Coslédan F, Halley H, Francès B, Lassalle JM, Meunier B. Copper chelator induced efficient episodic memory recovery in a non-transgenic Alzheimer’s mouse model. PLoS One. 2012;7(8):e43105.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron. 2001;30(3):665–76.PubMedCrossRefGoogle Scholar
  20. Choi B-S, Zheng W. Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res. 2009;1248:14–21.PubMedCrossRefGoogle Scholar
  21. Choo XY, Alukaidey L, White AR, Grubman A. Neuroinflammation and copper in Alzheimer’s disease. Int J Alzheimers Dis. 2013;2013:145345.PubMedPubMedCentralGoogle Scholar
  22. Christensen MA, Zhou W, Qing H, Lehman A, Philipsen S, Song W. Transcriptional regulation of BACE1, the β-amyloid precursor protein β-secretase, by Sp1. Mol Cell Biol. 2004;24(2):865–74.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Citron M, Diehl TS, Gordon G, Biere AL, Seubert P, Selkoe DJ. Evidence that the 42-and 40-amino acid forms of amyloid β protein are generated from the β-amyloid precursor protein by different protease activities. Proc Natl Acad Sci. 1996;93(23):13170–5.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cottrell BA, Galvan V, Banwait S, Gorostiza O, Lombardo CR, Williams T, et al. A pilot proteomic study of amyloid precursor interactors in Alzheimer’s disease. Ann Neurol. 2005;58(2):277–89.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Crouch PJ, Hung LW, Adlard PA, Cortes M, Lal V, Filiz G, et al. Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci U S A. 2009;106(2):381–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, et al. Evidence that the β-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Aβ by zinc. J Biol Chem. 2000;275(26):19439–42.PubMedCrossRefGoogle Scholar
  27. Culotta VC, Klomp LW, Strain J, Casareno RLB, Krems B, Gitlin JD. The copper chaperone for superoxide dismutase. J Biol Chem. 1997;272(38):23469–72.PubMedCrossRefGoogle Scholar
  28. Davies KM, Hare DJ, Cottam V, Chen N, Hilgers L, Halliday G, et al. Localization of copper and copper transporters in the human brain. Metallomics Integ Biometal Sci. 2013;5(1):43–51.CrossRefGoogle Scholar
  29. de Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73(4):685–97.PubMedPubMedCentralCrossRefGoogle Scholar
  30. DeWitt DA, Perry G, Cohen M, Doller C, Silver J. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol. 1998;149(2):329–40.PubMedCrossRefGoogle Scholar
  31. Di Vaira M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P. Clioquinol, a drug for Alzheimer’s disease specifically interfering with brain metal metabolism: structural characterization of its zinc (II) and copper (II) complexes. Inorg Chem. 2004;43(13):3795–7.PubMedCrossRefGoogle Scholar
  32. Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen S-H. Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol. 1988;132(1):86.PubMedPubMedCentralGoogle Scholar
  33. Donnelly PS, Caragounis A, Du T, Laughton KM, Volitakis I, Cherny RA, et al. Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-beta peptide. J Biol Chem. 2008;283(8):4568–77.PubMedCrossRefGoogle Scholar
  34. Duncan C, White AR. Copper complexes as therapeutic agents. Metallomics. 2012;4(2):127–38.PubMedCrossRefGoogle Scholar
  35. Filiz G, Price KA, Caragounis A, Du T, Crouch PJ, White AR. The role of metals in modulating metalloprotease activity in the AD brain. Eur Biophys J. 2008;37(3):315–21.PubMedCrossRefGoogle Scholar
  36. Galeazzi L, Ronchi P, Franceschi C, Giunta S. In vitro peroxidase oxidation induces stable dimers of beta-amyloid (1-42) through dityrosine bridge formation. Amyloid. 1999;6(1):7–13.PubMedCrossRefGoogle Scholar
  37. Götz J, Chen F, Van Dorpe J, Nitsch R. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science. 2001;293(5534):1491–5.PubMedCrossRefGoogle Scholar
  38. Green MA, Klippenstein DL, Tennison JR. Copper(II) bis(thiosemicarbazone) complexes as potential tracers for evaluation of cerebral and myocardial blood flow with PET. J Nucl Med. 1988;29(9):1549–57.PubMedGoogle Scholar
  39. Grossi C, Francese S, Casini A, Rosi MC, Luccarini I, Fiorentini A, et al. Clioquinol decreases amyloid-β burden and reduces working memory impairment in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis. 2009;17(2):423–40.PubMedCrossRefGoogle Scholar
  40. Halliwell B, Gutteridge J. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hegde ML, Bharathi P, Suram A, Venugopal C, Jagannathan R, Poddar P, et al. Challenges associated with metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis. 2009;17(3):457–68.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Heicklen-Klein A, Ginzburg I. Tau promoter confers neuronal specificity and binds Sp1 and AP-2. J Neurochem. 2000;75(4):1408–18.PubMedCrossRefGoogle Scholar
  43. Henry W, Querfurth H, LaFerla F. Mechanisms of disease Alzheimer’s disease. New Engl J Med. 2010;362:329–44.CrossRefGoogle Scholar
  44. Higuchi M, Lee VM-Y, Trojanowski JQ. Tau and axonopathy in neurodegenerative disorders. NeuroMolecular Med. 2002;2(2):131–50.PubMedCrossRefGoogle Scholar
  45. Hu M, Waring JF, Gopalakrishnan M, Li J. Role of GSK-3beta activation and alpha7 nAChRs in Abeta(1-42)-induced tau phosphorylation in PC12 cells. J Neurochem. 2008;106(3):1371–7.PubMedCrossRefGoogle Scholar
  46. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, et al. Cu (II) potentiation of Alzheimer Aβ neurotoxicity correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem. 1999;274(52):37111–6.PubMedCrossRefGoogle Scholar
  47. Huang X, Atwood CS, Moir RD, Hartshorn MA, Tanzi RE, Bush AI. Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Aβ peptides. J Biol Inorg Chem. 2004;9(8):954–60.PubMedCrossRefGoogle Scholar
  48. Hung YH, Bush AI, Cherny RA. Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem. 2010;15(1):61–76.PubMedCrossRefGoogle Scholar
  49. Hung YH, Bush AI, La Fontaine S. Links between copper and cholesterol in Alzheimer’s disease. Front Physiol. 2013;4:111.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2):65–87.PubMedCrossRefGoogle Scholar
  51. Kaden D, Bush AI, Danzeisen R, Bayer TA, Multhaup G. Disturbed copper bioavailability in Alzheimer’s disease. Int J Alzheimers Dis. 2011;2011:345614.PubMedPubMedCentralGoogle Scholar
  52. Kardos J, Kovacs I, Hajos F, Kalman M, Simonyi M. Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci Lett. 1989;103(2):139–44.PubMedCrossRefGoogle Scholar
  53. Kennedy T, Ghio AJ, Reed W, Samet J, Zagorski J, Quay J, et al. Copper-dependent inflammation and nuclear factor-kappaB activation by particulate air pollution. Am J Respir Cell Mol Biol. 1998;19(3):366–78.PubMedCrossRefGoogle Scholar
  54. Kessler H, Bayer TA, Bach D, Schneider-Axmann T, Supprian T, Herrmann W, et al. Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. J Neural Transm. 2008;115(8):1181–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Khlistunova I, Biernat J, Wang Y, Pickhardt M, von Bergen M, Gazova Z, et al. Inducible expression of Tau repeat domain in cell models of tauopathy aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem. 2006;281(2):1205–14.PubMedCrossRefGoogle Scholar
  56. Klomp LW, Lin S-J, Yuan DS, Klausner RD, Culotta VC, Gitlin JD. Identification and functional expression of HAH1, a novel human gene involved in copper homeostasis. J Biol Chem. 1997;272(14):9221–6.PubMedCrossRefGoogle Scholar
  57. Kong G-W, Adams JJ, Cappai R, Parker MW. Structure of Alzheimer’s disease amyloid precursor protein copper-binding domain at atomic resolution. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2007;63(10):819–24.CrossRefGoogle Scholar
  58. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2008;7(9):779–86.PubMedCrossRefGoogle Scholar
  59. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 2001;293(5534):1487–91.PubMedCrossRefGoogle Scholar
  60. Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, et al. Trans-synaptic spread of tau pathology in vivo. PLoS One. 2012;7(2):e31302.PubMedPubMedCentralCrossRefGoogle Scholar
  61. LoPresti P, Szuchet S, Papasozomenos SC, Zinkowski RP, Binder LI. Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci. 1995;92(22):10369–73.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lu J, Zheng Y-L, Wu D-M, Sun D-X, Shan Q, Fan S-H. Trace amounts of copper induce neurotoxicity in the cholesterol-fed mice through apoptosis. FEBS Lett. 2006;580(28–29):6730–40.PubMedCrossRefGoogle Scholar
  63. Lue L-F, Kuo Y-M, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155(3):853–62.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ma QF, Li YM, Du JT, Kanazawa K, Nemoto T, Nakanishi H, et al. Binding of copper (II) ion to an Alzheimer’s tau peptide as revealed by MALDI-TOF MS, CD, and NMR. Biopolymers. 2005;79(2):74–85.PubMedCrossRefGoogle Scholar
  65. Ma Q, Li Y, Du J, Liu H, Kanazawa K, Nemoto T, et al. Copper binding properties of a tau peptide associated with Alzheimer’s disease studied by CD, NMR, and MALDI-TOF MS. Peptides. 2006;27(4):841–9.PubMedCrossRefGoogle Scholar
  66. Malm TM, Iivonen H, Goldsteins G, Keksa-Goldsteine V, Ahtoniemi T, Kanninen K, et al. Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting beta-amyloid burden. J Neurosci. 2007;27(14):3712–21.PubMedCrossRefGoogle Scholar
  67. Mao X, Ye J, Zhou S, Pi R, Dou J, Zang L, et al. The effects of chronic copper exposure on the amyloid protein metabolisim associated genes’ expression in chronic cerebral hypoperfused rats. Neurosci Lett. 2012;518(1):14–8.PubMedCrossRefGoogle Scholar
  68. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.PubMedGoogle Scholar
  69. McGeer PL, Akiyama H, Itagaki S, McGeer EG. Immune system response in Alzheimer’s disease. Can J Neurol Sci. 1989;16(4 Suppl):516–27.PubMedCrossRefGoogle Scholar
  70. Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol. 2005;18(3):315–21.PubMedCrossRefGoogle Scholar
  71. Moriwaki H, Osborne MR, Phillips DH. Effects of mixing metal ions on oxidative DNA damage mediated by a Fenton-type reduction. Toxicol In Vitro. 2008;22(1):36–44.PubMedCrossRefGoogle Scholar
  72. Mot AI, Wedd AG, Sinclair L, Brown DR, Collins SJ, Brazier MW. Metal attenuating therapies in neurodegenerative disease. Expert Rev Neurother. 2011;11(12):1717–45.PubMedCrossRefGoogle Scholar
  73. Myhre O, Utkilen H, Duale N, Brunborg G, Hofer T. Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: possible impact of environmental exposures. Oxidative Med Cell Longev. 2013;2013:726954.CrossRefGoogle Scholar
  74. Opazo CM, Greenough MA, Bush AI. Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci. 2014;6:143.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Perry G, Cash AD, Smith MA. Alzheimer disease and oxidative stress. Biomed Res Int. 2002;2(3):120–3.Google Scholar
  76. Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 2013;14(4):389–94.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pratico D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann N Y Acad Sci. 2008;1147:70–8.PubMedCrossRefGoogle Scholar
  78. Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M. World Alzheimer report 2015 [Internet]. London. 2015. Available from:
  79. Reitz C. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis. 2012;2012:369808.PubMedPubMedCentralGoogle Scholar
  80. Rembach A, Hare DJ, Lind M, Fowler CJ, Cherny RA, McLean C, et al. Decreased copper in Alzheimer’s disease brain is predominantly in the soluble extractable fraction. Int J Alzheimers Dis. 2013;2013:623241.PubMedPubMedCentralGoogle Scholar
  81. Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol. 2003;60(12):1685–91.PubMedCrossRefGoogle Scholar
  82. Rozemuller JM, Eikelenboom P, Pals ST, Stam FC. Microglial cells around amyloid plaques in Alzheimer’s disease express leucocyte adhesion molecules of the LFA-1 family. Neurosci Lett. 1989;101(3):288–92.PubMedCrossRefGoogle Scholar
  83. Salustri C, Barbati G, Ghidoni R, Quintiliani L, Ciappina S, Binetti G, et al. Is cognitive function linked to serum free copper levels? A cohort study in a normal population. Clin Neurophysiol. 2010;121(4):502–7.PubMedCrossRefGoogle Scholar
  84. Sayre LM, Perry G, Smith MA. Oxidative stress and neurotoxicity. Chem Res Toxicol. 2008;21(1):172–88.PubMedCrossRefGoogle Scholar
  85. Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol. 2014;116:33–57.PubMedCrossRefGoogle Scholar
  86. Schmalz G, Schuster U, Schweikl H. Influence of metals on IL-6 release in vitro. Biomaterials. 1998;19(18):1689–94.PubMedCrossRefGoogle Scholar
  87. Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM. Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol. 2011;94(3):296–306.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741–66.PubMedGoogle Scholar
  89. Shaffer LM, Dority MD, Gupta-Bansal R, Frederickson RC, Younkin SG, Brunden KR. Amyloid β protein (Aβ) removal by neuroglial cells in culture. Neurobiol Aging. 1995;16(5):737–45.PubMedCrossRefGoogle Scholar
  90. Small DH, McLean CA. Alzheimer’s disease and the amyloid β protein. J Neurochem. 1999;73(2):443–9.PubMedCrossRefGoogle Scholar
  91. Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, et al. Copper-mediated amyloid-β toxicity is associated with an intermolecular histidine bridge. J Biol Chem. 2006;281(22):15145–54.PubMedCrossRefGoogle Scholar
  92. Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, et al. Concentration dependent Cu2+ induced aggregation and Dityrosine formation of the Alzheimer’s disease amyloid-β peptide. Biochemistry. 2007;46(10):2881–91.PubMedCrossRefGoogle Scholar
  93. Song I-S, Chen HH, Aiba I, Hossain A, Liang ZD, Klomp LW, et al. Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol Pharmacol. 2008;74(3):705–13.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Squitti R. Copper dysfunction in Alzheimer’s disease: from meta-analysis of biochemical studies to new insight into genetics. J Trace Elem Med Biol. 2012;26(2):93–6.PubMedCrossRefGoogle Scholar
  95. Squitti R. Copper subtype of Alzheimer’s disease (AD): meta-analyses, genetic studies and predictive value of non-ceruloplasmim copper in mild cognitive impairment conversion to full AD. J Trace Elem Med Biol. 2014;28(4):482–5.PubMedCrossRefGoogle Scholar
  96. Squitti R, Pasqualetti P, Dal Forno G, Moffa F, Cassetta E, Lupoi D, et al. Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology. 2005;64(6):1040–6.PubMedCrossRefGoogle Scholar
  97. Squitti R, Ventriglia M, Barbati G, Cassetta E, Ferreri F, Dal Forno G, et al. ‘Free’ copper in serum of Alzheimer’s disease patients correlates with markers of liver function. J Neural Transm. 2007;114(12):1589–94.PubMedCrossRefGoogle Scholar
  98. Squitti R, Quattrocchi CC, Salustri C, Rossini PM. Ceruloplasmin fragmentation is implicated in ‘free’ copper deregulation of Alzheimer disease. Prion. 2008;2(1):23–7.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Squitti R, Bressi F, Pasqualetti P, Bonomini C, Ghidoni R, Binetti G, et al. Longitudinal prognostic value of serum “free” copper in patients with Alzheimer disease. Neurology. 2009;72(1):50–5.PubMedCrossRefGoogle Scholar
  100. Squitti R, Ghidoni R, Siotto M, Ventriglia M, Benussi L, Paterlini A, et al. Value of serum nonceruloplasmin copper for prediction of mild cognitive impairment conversion to Alzheimer disease. Ann Neurol. 2014;75(4):574–80.PubMedCrossRefGoogle Scholar
  101. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow E-M. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 2002;156(6):1051–63.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Su X-Y, Wu W-H, Huang Z-P, Hu J, Lei P, Yu C-H, et al. Hydrogen peroxide can be generated by tau in the presence of Cu (II). Biochem Biophys Res Commun. 2007;358(2):661–5.PubMedCrossRefGoogle Scholar
  103. Treiber C, Simons A, Strauss M, Hafner M, Cappai R, Bayer TA, et al. Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer’s disease. J Biol Chem. 2004;279(50):51958–64.PubMedCrossRefGoogle Scholar
  104. Trombley PQ, Shepherd GM. Differential modulation by zinc and copper of amino acid receptors from rat olfactory bulb neurons. J Neurophysiol. 1996;76(4):2536–46.PubMedGoogle Scholar
  105. Ventriglia M, Bucossi S, Panetta V, Squitti R. Copper in Alzheimer’s disease: a meta-analysis of serum, plasma, and cerebrospinal fluid studies. J Alzheimers Dis. 2012;30(4):981–4.PubMedGoogle Scholar
  106. Wang Z-X, Tan L, Wang H-F, Ma J, Liu J, Tan M-S, et al. Serum iron, zinc, and copper levels in patients with Alzheimer’s disease: a replication study and meta-analyses. J Alzheimers Dis. 2015;47(3):565–81.PubMedCrossRefGoogle Scholar
  107. Weiser T, Wienrich M. The effects of copper ions on glutamate receptors in cultured rat cortical neurons. Brain Res. 1996;742(1–2):211–8.PubMedCrossRefGoogle Scholar
  108. White AR, Barnham KJ, Bush AI. Metal homeostasis in Alzheimer’s disease. Expert Rev Neurother. 2006a;6(5):711–22.PubMedCrossRefGoogle Scholar
  109. White AR, Du T, Laughton KM, Volitakis I, Sharples RA, Xilinas ME, et al. Degradation of the Alzheimer disease amyloid β-peptide by metal-dependent up-regulation of metalloprotease activity. J Biol Chem. 2006b;281(26):17670–80.PubMedCrossRefGoogle Scholar
  110. Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease—a double-edged sword. Neuron. 2002;35(3):419–32.PubMedCrossRefGoogle Scholar
  111. Zappasodi F, Salustri C, Babiloni C, Cassetta E, Del Percio C, Ercolani M, et al. An observational study on the influence of the APOE-ε4 allele on the correlation between ‘free’copper toxicosis and EEG activity in Alzheimer disease. Brain Res. 2008;1215:183–9.PubMedCrossRefGoogle Scholar
  112. Zheng Z, White C, Lee J, Peterson TS, Bush AI, Sun GY, et al. Altered microglial copper homeostasis in a mouse model of Alzheimer’s disease. J Neurochem. 2010;114(6):1630–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zhou L-X, Du J-T, Zeng Z-Y, Wu W-H, Zhao Y-F, Kanazawa K, et al. Copper (II) modulates in vitro aggregation of a tau peptide. Peptides. 2007;28(11):2229–34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PathologyThe University of MelbourneParkvilleAustralia
  2. 2.Cell and Molecular BiologyQIMR Berghofer Medical Research InstituteHerstonAustralia
  3. 3.Royal Brisbane HospitalHerstonAustralia

Personalised recommendations