Advertisement

Environmental Risks of Deep-sea Mining

  • Philip P. E. Weaver
  • David S. M. Billett
  • Cindy L. Van Dover
Chapter

Abstract

The mining of the deep-sea for minerals has been on the horizon for many years with interest increasing rapidly since 2010 following the application for, and approval of, many new contracts for exploration in international waters. Some contracts for exploitation have been granted in national waters with mining expected in the next few years. These activities will impact ecosystems that have not been affected by man’s influence before, and many of them are poorly understood due to their remoteness and complexity. This paper describes the likely impacts for mining the three main deep-sea minerals—manganese nodules, cobalt crusts and polymetallic sulphides and briefly looks at possible mitigation measures.

Keywords

Deep-sea mining Environmental impact Polymetallic nodules Seafloor sulphides Cobalt crusts 

Notes

Acknowledgements

P.P.E. Weaver and D.S.M. Billett acknowledge funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the MIDAS project, grant agreement n° 603418.

References

  1. Baco A, Cairns SD (2012) Comparing molecular variation to morphological species designations in the deep-sea coral Narella reveals new insights into seamount coral ranges. PLoS One 7(9):e45555CrossRefGoogle Scholar
  2. Batker D, Schmidt R (2015) Environmental and social benchmarking analysis of the nautilus minerals Inc. Solwara 1 Project. Nautilus Document Reference SL01-NMN-XEE-RPT-0180-001 http://www.nautilusminerals.com/irm/content/pdf/eartheconomics-reports/earth-economics-may-2015.pdf. Accessed 30 Nov 2016
  3. Beaulieu SE (2010) InterRidge Global Database of Active Submarine Hydrothermal Vent Fields: prepared for InterRidge, Version 2.0. World Wide Web electronic publication. http://www.interridge.org/IRvents
  4. Bertram C, Krätschell A, O’Brien K, Brückmann W, Proelss A, Rehdanz K (2011) Metalliferous sediments in the Atlantis II Deep-Assessing the geological and economic resource potential and legal constraints. Res Policy 36:315–329CrossRefGoogle Scholar
  5. Bluhm H (2001) Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor. Deep-Sea Res II Top Stud Oceanogr 48:3841–3868CrossRefGoogle Scholar
  6. Bors EK, Rowden AA, Maas EW, Clark MR, Shank TM (2012) Patterns of deep-sea genetic connectivity in the New Zealand region: implications for management of benthic ecosystems. PLoS One 7(11):e49474CrossRefGoogle Scholar
  7. Boschen RE, Rowden AA, Clark MR, Gardner JPA (2013) Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast Manag 84:54–67. doi: 10.1016/j.ocecoaman.2013.07.005 CrossRefGoogle Scholar
  8. Carreiro-Silva M, Andrews AH, Braha-Henriques A, de Matos A, Porteiro FM, Santos RS (2013) Variability in growth rates of long-lived black coral Leiopathes sp. from the Azores. Mar Ecol Prog Ser 473:189–199CrossRefGoogle Scholar
  9. Chamberlain SC (2000) Vision in hydrothermal vent shrimp. Philos Trans R Soc Lond Ser B Biol Sci 355:1151–1154. doi: 10.1098/rstb.2000.0657 CrossRefGoogle Scholar
  10. Chung JS (2009) Deep-ocean mining technology III: developments. Proceedings of the Eighth ISOPE Ocean Mining Symposium, Chennai, India, September 20–24, 2009, pp 1–7Google Scholar
  11. Clark M, Smith S (2013) Environmental management considerations. In: Baker E, Beaudoin Y (eds) Deep sea minerals: cobalt-rich ferromanganese crusts, a physical, biological, environmental, and technical review, vol 1C. SPC-Grid Arendal, Arendal, pp 23–40Google Scholar
  12. Clark MR, Schlacher TA, Rowden AA, Stocks KI, Consalvey M (2012) Science priorities for seamounts: research links to conservation and management. PLoS One 7(1):e29232. doi: 10.1371/journal.pone.0029232 CrossRefGoogle Scholar
  13. Copley JTP, Tyler PA, Dover CLV, Schultz A, Dickson P, Singh S (1999) Subannual Temporal Variation in Faunal Distributions at the TAG Hydrothermal Mound (26 N, Mid-Atlantic Ridge). P.S.Z.N. Mar Ecol 20:291–306CrossRefGoogle Scholar
  14. Copley JTP, Jorgensen PBK, Sohn RA (2007) Assessment of decadal-scale ecological change at a deep mid-Atlantic hydrothermal vent and reproductive time-series in the shrimp Rimicaris exoculata. J Mar Biol Assoc UK 87:859. doi: 10.1017/S0025315407056512 CrossRefGoogle Scholar
  15. Ecorys (2014) Study to investigate the state of knowledge of deep-sea mining—Final report & Annexes, European Commission, DG Maritime Affairs and Fisheries, Available at https://webgate.ec.europa.eu/maritimeforum/sites/maritimeforum/files/FGP96656_DSM_Final_report.pdf. Accessed 2 Feb 2016
  16. Eisler R (1998) Copper hazards to fish, wildlife, and invertebrates: a synoptic review. Biological Science Report USGS/BRD/BSR—1997-0002 Contaminant Hazard ReviewsGoogle Scholar
  17. Erickson KL, Macko S a, Van Dover CL (2009) Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin). Deep-Sea Res II Top Stud Oceanogr 56:1577–1585. doi: 10.1016/j.dsr2.2009.05.002 CrossRefGoogle Scholar
  18. Halfar J, Fujita RM (2007) Danger of deep-sea mining. Science 316:987CrossRefGoogle Scholar
  19. Hannington MD, Jamieson J, Monecke T, Petersen S, Beaulieu S (2011a) The abundance of seafloor massive sulfide deposits. Geology 39:1155–1158CrossRefGoogle Scholar
  20. Hannington MD, Jamieson J, Monecke T, Petersen S (2011b) Estimating the metal content of SMS deposits. OCEANS’11 MTS/IEEE KONA, pp 1–4Google Scholar
  21. Hein JR, Koschinsky A (2014) Deep-ocean ferromanganese crusts and nodules, treatise on geochemistry. Elsevier, pp 273–291, http://linkinghub.elsevier.com/retrieve/pii/B9780080959757011116
  22. Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: comparison with land-based resources. Ore Geol Rev 51:1–14CrossRefGoogle Scholar
  23. Herring P, Gaten E, Shelton P (1999) Are vent shrimps blinded by science ? Nature 398:116CrossRefGoogle Scholar
  24. International Seabed Authority (2008a) Rationale and recommendations for the establishment of preservation reference areas for nodule mining in the Clarion-Clipperton Zone. Fourteenth session. Kingston, Jamaica, 26 May–6 June 2008. http://www.isa.org.jm/en/sessions/2008/documents: Legal and Technical Commission, International Seabed Authority. Technical document no. ISBA/14/LTC/2
  25. International Seabed Authority (2008b) Geologic characteristics and geographic distribution of potential cobalt-rich ferromanganese crusts deposits in the Area. In: Mining cobalt-rich ferromanganese crusts and polymetallic sulphides deposits: technological and economic considerations. Proceedings of the International Seabed Authority’s Workshop held in Kingston, Jamaica, 31 July–4 August 2006, pp 59–90Google Scholar
  26. International Seabed Authority (2010) Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for polymetallic nodules in the Area. ISBA/16/C/7Google Scholar
  27. International Seabed Authority (2015) Status of contracts for exploration in the Area. Report of the Secretary General. ISBA/21/C/8/Rev.1Google Scholar
  28. Kaschner K (2007) Air-breathing visitors to seamounts: marine mammals. In: Pitcher TJ, Morato T, Hart PJB, Clark MR, Haggan N et al (eds) Seamounts: ecology, fisheries and conservation, Blackwell fisheries and aquatic resources Series, vol 12. Blackwell Publishing, Oxford, pp 230–238CrossRefGoogle Scholar
  29. Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima Y, Iwamori H (2011) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci 4:535–539. doi: 10.1038/ngeo1185 CrossRefGoogle Scholar
  30. Kvile KO, Taranto GH, Pitcher TJ, Morato T (2013) A global assessment of seamount ecosystems knowledge using an ecosystem evaluation network. Biol Conserv. doi:  10.1016/j.biocon.2013.10.002
  31. Lipton I (2012) Mineral Resource Estimate: Solwara Project, Bismarck Sea, PNG. Technical Report compiled under NI43-101. Golder Associates, for Nautilus Minerals Nuigini Inc. 218ppGoogle Scholar
  32. Litvinov F (2007) Fish visitors to seamounts: aggregations of large pelagic sharks above seamounts. In: Pitcher TJ, Morato T, Hart PJB, Clark MR, Haggan N et al (eds) Seamounts: ecology, fisheries and conservation, Blackwell fisheries and aquatic resources series, vol 12. Blackwell Publishing, Oxford, pp 202–206CrossRefGoogle Scholar
  33. Lodge M, Johnson D, Le Gurun G, Wengler M, Weaver P, Gunn V (2014) Seabed mining: International Seabed Authority environmental management plan for the Clarion-Clipperton Zone. A partnership approach. Mar Policy 49:66–72. doi: 10.1016/j.marpol.2014.04.006 CrossRefGoogle Scholar
  34. Lutz R, Shank T, Fornari D, Haymon R, Lilley M, Von Damm K, Desbruyeres D (1994) Rapid growth at deep-sea vents. Nature 371:663–664CrossRefGoogle Scholar
  35. McClain CR (2007) Seamounts: identity crisis or split personality? J Biogeogr 34:2001–2008. doi: 10.1111/j.1365–2699.2007.01783.x CrossRefGoogle Scholar
  36. McMurray GR (ed) (1987) Gorda ridge: a seafloor spreading Center in the United States’ exclusive economic zone Proceedings of the Gorda Ridge Symposium May 11–13, 1987, Portland, Oregon. Springer, 2012Google Scholar
  37. Morato T, Hoyle SD, Allain V, Nicol SJ (2010) Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc Natl Acad Sci U S A 107:9707–9711CrossRefGoogle Scholar
  38. O’Hara TD, England PR, Gunasekera RM, Naughton KM (2014) Limited phylogeographic structure for five bathyal ophiuroids at continental scales. Deep Sea Res I: Oceanogr Res Pap 84:18–28Google Scholar
  39. O’Neill PJ, Jinks RN, Herzog ED, Battelle B-A, Kass L, Renninger GH, Chamberlain SC (2009) The morphology of the dorsal eye of the hydrothermal vent shrimp, Rimicaris exoculata. Vis Neurosci 12:861. doi: 10.1017/S0952523800009421 CrossRefGoogle Scholar
  40. Osman R, Munguia P, Zajac R (2010) Ecological thresholds in marine communities: theory, experiments and management. Mar Ecol Prog Ser 413:185–187. doi: 10.3354/meps08765 CrossRefGoogle Scholar
  41. Perez JAA, dos Santos Alves E, Clark MR, Aksel Bergstad O, Gebruk A, Azevedo Cardoso I, Rogacheva A (2012) Patterns of life on the southern Mid-Atlantic Ridge: compiling what is known and addressing future research. Oceanography 25(4):16–31. doi: 10.5670/oceanog.2012.102 CrossRefGoogle Scholar
  42. Popper AN, Hastings MC (2009) The effects of anthropogenic sources of sounds on fishes. J Fish Biol 25:455–489CrossRefGoogle Scholar
  43. Portail M, Olu K, Escobar-Briones E, Caprais JC, Menot L, Waeles M, Cruaud P, Sarradin PM, Godfroy A, Sarrazin J (2015) Comparative study of vent and seep macrofaunal communities in the Guaymas Basin. Biogeosciences 12:5455–5479. doi: 10.5194/bg-12-5455-2015 CrossRefGoogle Scholar
  44. Priede IG, Bergstad OA, Miller PI, Vecchione M, Gebruk A, Falkenhaug T et al (2013) Does presence of a mid-ocean ridge enhance biomass and biodiversity? PLoS One 8(5):e61550. doi: 10.1371/journal.pone.0061550 CrossRefGoogle Scholar
  45. Rivera-Duarte I, Rosen G, Lapota D, Chadwick DB, Kear-Padilla L, Zirino A (2005) Copper toxicity to larval stages of three marine invertebrates and copper complexation capacity in San Diego Bay, California. Environ Sci Technol 39:1542–1546. doi: 10.1021/es040545j CrossRefGoogle Scholar
  46. Rolinski S, Segschneider J, Sundermann J (2001) Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep-Sea Res II Top Stud Oceanogr 48:3469–3485. doi: 10.1016/S0967-0645(01)00053-4 CrossRefGoogle Scholar
  47. Rosenbaum H, Grey F (2015) A critique of the Nautilus Minerals environmental and social benchmarking analysis of the Solwara 1 project. https://www.earthworksaction.org/files/publications/REPORT-AccountabilityZERO.pdf. Accessed 30 Nov 2015
  48. Rowden AA, Dower JF, Schlacher TA, Consalvey M, Clark MR (2010) Paradigms in seamount ecology: fact, fiction and future. Mar Ecol 31:226–241CrossRefGoogle Scholar
  49. Sander SG, Koschinsky A (2011) Metal flux from hydrothermal vents increased by organic complexation. Nat Geosci 4:145–150CrossRefGoogle Scholar
  50. Santos M, Bolten AB, Martins HR, Riewald B, Bjornald KA (2007) Airbreathing visitors to seamounts: sea turtles. In: Pitcher TJ, Morato T, Hart PJB, Clark MR, Haggan N et al (eds) Seamounts: ecology, fisheries and conservation, Blackwell fisheries and aquatic resources series, vol 12. Blackwell Publishing, Oxford, pp 239–244CrossRefGoogle Scholar
  51. Secretariat of the Pacific Community (2014) Deep sea minerals potential of the Pacific Islands region. Information Brochure 6. http://www.sopac.org/dsm/public/files/Deep%20Sea%20Minerals%20in%20the%20Pacific%20Islands%20Region%20Brochure%206_V2.pdf
  52. Selkoe KA, Blenckner T, Caldwell MR, Crowder LB, Erickson AL, Essington TE, Estes JA, Fujita RM, Halpern BS, Hunsicker ME, Kappel CV, Kelly RP, Kittinger JN, Levin PS, Lynham JM, Mach ME, Martone RG, Mease LA, Salomon AK, Samhouri JF, Scarborough C, Stier AC, White C, Zedler J (2015) Principles for managing marine ecosystems prone to tipping points. Ecosyst Health Sustain 1:1–18. doi: 10.1890/EHS14-0024.1 CrossRefGoogle Scholar
  53. Shank TM (2010) Deep-ocean laboratories of faunal connectivity, evolution, and endemism. Oceanography 23(1):108–122CrossRefGoogle Scholar
  54. Simpson SL, Spadaro DA (2016) Bioavailability and chronic toxicity of metal sulfide minerals to benthic marine invertebrates: implications for deep sea exploration, mining and tailings disposal. Environ Sci Technol 50(7):4061–4070. doi: 10.1021/acs.est.6b00203 CrossRefGoogle Scholar
  55. Smith CR, Galron J, Glover A, Gooday A, Kitazato H, Lambshead J, Menot L, Paterson G, Rogers A, Sibuet M (2008) Biodiversity, species ranges, and gene flow in the abyssal Pacific nodule province: predicting and managing the impacts of deep seabed mining. ISA Technical Study no. 3, International Seabed Authority, Kingston, JamaicaGoogle Scholar
  56. Steiner R (2009) Independent review of the environmental impact statement for the proposed Nautilus Minerals Solwara 1 Seabed Mining Project, Papua New Guinea. http://www.deepseaminingoutofourdepth.org/wp-content/uploads/Steiner-Independent-review-DSM1.pdf
  57. Taranto GH, Kvile KØ, Pitcher TJ, Morato T (2012) An ecosystem evaluation framework for global seamount conservation and management. PLoS One 7(8):e42950. doi: 10.1371/journal.pone.0042950 CrossRefGoogle Scholar
  58. Thiel H, Foell EJ, Schriever G (1991) Potential environmntal effects of deep seabed mining. Berichte des Zentrums für Meeres- und Klimaforschung der Universität Hamburg, vol 26, 243ppGoogle Scholar
  59. Thiel H, Bluhm H, Borowski C, Bussau C, Gooday AJ, Maybury C, Schriever G (1992) The impactof mining on deep-sea organisms. The DISCOL-project. Ocean Challenge 3:40–46Google Scholar
  60. Tivey M (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20:50–65CrossRefGoogle Scholar
  61. UNEP-WCMC (2008) National and regional networks of marine protected areas: a review of progress. UNEP-WCMC, Cambridge, p 144Google Scholar
  62. Van Dover C (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton. doi: 10.2307/177518 Google Scholar
  63. Van Dover C (2011) Tighten regulations on deep-sea mining. Nature 470:31–33CrossRefGoogle Scholar
  64. Van Dover CL (2014a) Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: a review. Mar Environ Res 102:59–72. doi: 10.1016/j.marenvres.2014.03.008 CrossRefGoogle Scholar
  65. Van Dover CL, Aronson J, Pendleton L, Smith S, Arnaud-Haond S, Moreno-Mateos D, Barbier E, Billett D, Bowers K, Danovaro R, Edwards A, Kellert S, Morato T, Pollard E, Rogers A, Warner R (2014b) Ecological restoration in the deep sea: desiderata. Mar Policy 44:98–106. doi: 10.1016/j.marpol.2013.07.006 CrossRefGoogle Scholar
  66. Van Dover C, Szuts EZ, Chamberlain SC, Cann J (1989) A novel eye in “eyeless” shrimp from hydrothermal vents of the Mid-Atlantic Ridge. Nature 337:458–460CrossRefGoogle Scholar
  67. Van Dover CL, Reynolds GT, Chave AD, Tyson JA (1996) Light at deep-sea hydrothermal vents. Geophys Res Lett 23:2049. doi: 10.1029/96GL02151 CrossRefGoogle Scholar
  68. Van Dover CL, Smith CR, Ardron J, Dunn D, Gjerde K, Levin L, Smith S (2012) Designating networks of chemosynthetic ecosystem reserves in the deep sea. Mar Policy 36:378–381. doi: 10.1016/j.marpol.2011.07.002 CrossRefGoogle Scholar
  69. Vanreusel A, Hilario A, Ribeiro PA, Menot L, Arbizu PM (2016) Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci Rep 6:26808. doi: 10.1038/srep26808 CrossRefGoogle Scholar
  70. Watanabe H, Fujikura K, Kojima S, Miyazaki J-I, Fujiwara Y (2010) Japan: vents and seeps in close proximity. In: The vent and seep biota: topics in geobiology. Springer, Dordrecht, pp 379–402. doi: 10.1007/978-90-481-9572-5 CrossRefGoogle Scholar
  71. Williams A, Schlacher TA, Rowden AA, Althaus F, Clark MR, Bowden DA, Stewart R, Bax NJ, Consalvey M, Kloser RJ (2010) Seamount megabenthic assemblages fail to recover from trawling impacts. Mar Ecol 31:183–199. doi: 10.1111/j.1439-0485.2010.00385.x CrossRefGoogle Scholar
  72. WODA (2013) Technical guidance on underwater sound. http://www.dredging.org/documents/ceda/html_page/2013-06-woda-technicalguidance-underwatersoundlr.pdf. Accessed 20 May 2016
  73. Yesson C, Clark MR, Taylor ML, Rogers AD (2011) The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep Sea Res Part 1 Oceanogr Res Pap 58:442–444CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Philip P. E. Weaver
    • 1
  • David S. M. Billett
    • 2
  • Cindy L. Van Dover
    • 3
  1. 1.Seascape ConsultantsRomseyUK
  2. 2.Deep Seas Environmental SolutionsAshurstUK
  3. 3.Duke UniversityDurhamUSA

Personalised recommendations