Advertisement

Big Data and Data Science Applications for Independent and Healthy Living

  • Robert Keight
  • Dhiya Al-Jumeily
  • Abir Hussain
  • Paul Fergus
  • Jamila Mustafina
Chapter

Abstract

Paralleling the state of human progress, developments in healthcare reflect a deeply entrained drive to improve the parameters governing our own existence, including both those which threaten to disrupt our biological functions and followed by those which limit our ability to improve the effectiveness of the former [1, 2]. The technology of the past has allowed us to improve the conditions of our environment and to undertake limited medical interventions in the absence of a direct understanding of disease-causing mechanisms [2]. It is the arrival of the modern era that has opened unprecedented understanding of biological systems and disease mechanisms [3–9], yet such depth of knowledge has also brought a wider realisation of the full complexity and scale of the systems responsible for the biological processes underpinning our existence [10–13]. It is clear that in order to rise to the unprecedented challenges presented by such novel domains, the methods at our disposal must be advanced accordingly to support the changing nature of our task frameworks. The idea that representable forms of information processing may underpin familiar (and novel) forms of intelligence, such as the human brain, raises the possibility that intelligence itself may be practically simulated in alternative settings, for example, via computation, providing a capacity to sustainably address problems of arbitrary complexity. The field of intelligent systems, a research direction within the wider field of artificial intelligence (AI), is concerned with enabling the computational resources of today for the construction of systems that may respond to problems through intelligent abstractions, whose parameters differ from human cognition. Through the combination of computational infrastructure and the patterns of intelligence in this way, it is conceivable that the frontiers of healthcare and medicine may be sustainably advanced to address the broad challenges that underpin the current era.

Notes

Acknowledgements

We would like to thank the following PhD candidates, currently studying at Liverpool John Moores University, who kindly contributed the six case studies used in this chapter: Case Study 1, Jade Hind; Case Study 2, Rounaq Abbas; Case Study 3, Ibrahim Idowu; Case Study 4, Mohammed Khalaf; Case Study 5, Basma Abdulaimma; and Case Study 6, Casimiro Aday Curbelo Montañez.

References

  1. 1.
    Rosen, G., & Imperato, P. J. (2015). A history of public health. Baltimore: JHU Press.Google Scholar
  2. 2.
    Porter, D. (1999). Health, civilization, and the state: A history of public health from ancient to modern times. London/New York: Psychology Press.Google Scholar
  3. 3.
    Lederberg, J. (2000). Infectious history. Science, 288(5464), 287–293.CrossRefGoogle Scholar
  4. 4.
    Tomes, N. (1990). The private side of public health: Sanitary science, domestic hygiene, and the germ theory, 1870–1900. Bulletin of the History of Medicine, 64(4), 509.Google Scholar
  5. 5.
    Lawrence, C., & Dixey, R. (1992). Practising on principle: Joseph Lister and the germ theories of disease. In Medical theory, surgical practice: Studies in the history of surgery (pp. 153–215). London: Routledge.Google Scholar
  6. 6.
    Pray, L. (2008). Discovery of DNA structure and function: Watson and Crick. Nature Education, 1(1), 100.Google Scholar
  7. 7.
    Wells, P. (2001). Physics and engineering: Milestones in medicine. Medical Engineering & Physics, 23(3), 147–153.CrossRefGoogle Scholar
  8. 8.
    Hockstein, N., Gourin, C., Faust, R., & Terris, D. J. (2007). A history of robots: From science fiction to surgical robotics. Journal of Robotic Surgery, 1(2), 113–118.CrossRefGoogle Scholar
  9. 9.
    Yates, D. R., Vaessen, C., & Roupret, M. (2011). From Leonardo to da Vinci: The history of robot-assisted surgery in urology. BJU International, 108(11), 1708–1713.CrossRefGoogle Scholar
  10. 10.
    Bruggeman, F. J., Westerhoff, H. V., & Boogerd, F. C. (2002). BioComplexity: A pluralist research strategy is necessary for a mechanistic explanation of the “live” state. Philosophical Psychology, 15(4), 411–440.CrossRefGoogle Scholar
  11. 11.
    Covich, A. (2000). Biocomplexity and the future: The need to unite disciplines. Bioscience, 50(12), 1035.CrossRefGoogle Scholar
  12. 12.
    Michener, W. K., Baerwald, T. J., Firth, P., Palmer, M. A., Rosenberger, J. L., Sandlin, E. A., & Zimmerman, H. (2001). Defining and unraveling biocomplexity. Bioscience, 51(12), 1018–1023.CrossRefGoogle Scholar
  13. 13.
    Nicholson, J. K., Holmes, E., Lindon, J. C., & Wilson, I. D. (2004). The challenges of modeling mammalian biocomplexity. Nature Biotechnology, 22(10), 1268–1274.CrossRefGoogle Scholar
  14. 14.
    Collins, F., Galas, D., et al. (1993). A new five-year plan for the US human genome project. SCIENCE-NEW YORK THEN WASHINGTON, 262, 43–43.CrossRefGoogle Scholar
  15. 15.
    Sawicki, M. P., Samara, G., Hurwitz, M., & Passaro, E. (1993). Human genome project. The American Journal of Surgery, 165(2), 258–264.CrossRefGoogle Scholar
  16. 16.
    Collins, F. S., & McKusick, V. A. (2001). Implications of the human genome project for medical science. JAMA, 285(5), 540–544.CrossRefGoogle Scholar
  17. 17.
    Collins, F. S. (1999). Medical and societal consequences of the human genome project. New England Journal of Medicine, 341(1), 28–37.CrossRefGoogle Scholar
  18. 18.
    Collins, F. S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L., et al. (1998). New goals for the US human genome project: 1998-2003. Science, 282(5389), 682–689.CrossRefGoogle Scholar
  19. 19.
    Kevles, D. J., & Hood, L. E. (1993). The code of codes: Scientific and social issues in the human genome project. Cambridge, MA: Harvard University Press.Google Scholar
  20. 20.
    Collins, F. S., Morgan, M., & Patrinos, A. (2003). The human genome project: Lessons from large-scale biology. Science, 300(5617), 286–290.CrossRefGoogle Scholar
  21. 21.
    Watson, J. D. (1990). The human genome project: Past, present, and future. Science, 248(4951), 44–49.CrossRefGoogle Scholar
  22. 22.
    Bentley, D. R. (2000). The human genome project: An overview. Medicinal Research Reviews, 20(3), 189–196.CrossRefGoogle Scholar
  23. 23.
    Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.CrossRefGoogle Scholar
  24. 24.
    Markram, H., Meier, K., Lippert, T., Grillner, S., Frackowiak, R., Dehaene, S., Knoll, A., Sompolinsky, H., Verstreken, K., DeFelipe, J., et al. (2011). Introducing the human brain project. Procedia Computer Science, 7, 39–42.CrossRefGoogle Scholar
  25. 25.
    Alivisatos, A. P., Chun, M., Church, G. M., Deisseroth, K., Donoghue, J. P., Greenspan, R. J., McEuen, P. L., Roukes, M. L., Sejnowski, T. J., Weiss, P. S., et al. (2013). The brain activity map. Science, 339(6125), 1284–1285.CrossRefGoogle Scholar
  26. 26.
    Insel, T. R., Landis, S. C., & Collins, F. S. (2013). The NIH brain initiative. Science, 340(6133), 687–688.CrossRefGoogle Scholar
  27. 27.
    Collins, F. S., & Varmus, H. (2015). A new initiative on precision medicine. New England Journal of Medicine, 372(9), 793–795.CrossRefGoogle Scholar
  28. 28.
    Wagner, V., Dullaart, A., Bock, A.-K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211–1217.CrossRefGoogle Scholar
  29. 29.
    Roco, M. C. (2003). Nanotechnology: Convergence with modern biology and medicine. Current Opinion in Biotechnology, 14(3), 337–346.CrossRefGoogle Scholar
  30. 30.
    Evans, W. E., & Relling, M. V. (2004). Moving towards individualized medicine with pharmacogenomics. Nature, 429(6990), 464–468.CrossRefGoogle Scholar
  31. 31.
    McLeod, H. L., & Evans, W. E. (2001). Pharmacogenomics: Unlocking the human genome for better drug therapy. Annual Review of Pharmacology and Toxicology, 41(1), 101–121.CrossRefGoogle Scholar
  32. 32.
    Vidal, M., Chan, D. W., Gerstein, M., Mann, M., Omenn, G. S., Tagle, D., & Sechi, S. (2012). The human proteome–A scientific opportunity for transforming diagnostics, therapeutics, and healthcare. Clinical Proteomics, 9(1), 1.CrossRefGoogle Scholar
  33. 33.
    Weston, A. D., & Hood, L. (2004). Systems biology, proteomics, and the future of health care: Toward predictive, preventative, and personalized medicine. Journal of Proteome Research, 3(2), 179–196.CrossRefGoogle Scholar
  34. 34.
    Butte, A. J. (2008). Translational bioinformatics: Coming of age. Journal of the American Medical Informatics Association, 15(6), 709–714.CrossRefGoogle Scholar
  35. 35.
    Shah, N. H., & Tenenbaum, J. D. (2012). The coming age of data-driven medicine: Translational bioinformatics’ next frontier. Journal of the American Medical Informatics Association, 19(e1), e2–e4.CrossRefGoogle Scholar
  36. 36.
    Yan, Q. (2010). Translational bioinformatics and systems biology approaches for personalized medicine. In Systems biology in drug discovery and development: Methods and protocols (pp. 167–178). New York: Humana Press.Google Scholar
  37. 37.
    Feng, J. (2003). Computational neuroscience: A comprehensive approach. Boca Raton: CRC press.zbMATHCrossRefGoogle Scholar
  38. 38.
    Baraba´si, A.-L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: A network-based approach to human disease. Nature Reviews Genetics, 12(1), 56–68.CrossRefGoogle Scholar
  39. 39.
    Chen, C., Dubin, R., & Kim, M. C. (2014). Emerging trends and new developments in regenerative medicine: A scientometric update (2000–2014). Expert Opinion on Biological Therapy, 14(9), 1295–1317.CrossRefGoogle Scholar
  40. 40.
    Tanaka, H. (2010). Omics-based medicine and systems pathology. Methods of Information in Medicine, 49(2), 173–185.CrossRefGoogle Scholar
  41. 41.
    Garay, J. P., & Gray, J. W. (2012). Omics and therapy–A basis for precision medicine. Molecular Oncology, 6(2), 128–139.CrossRefGoogle Scholar
  42. 42.
    Hamburg, M. A., & Collins, F. S. (2010). The path to personalized medicine. New England Journal of Medicine, 363(4), 301–304.CrossRefGoogle Scholar
  43. 43.
    Cuijpers, P., et al. (2009). Prevention: An achievable goal in personalized medicine. Dialogues Clin Neurosci, 11(4), 447–454.Google Scholar
  44. 44.
    Harvey, A., Brand, A., Holgate, S. T., Kristiansen, L. V., Lehrach, H., Palotie, A., & Prainsack, B. (2012). The future of technologies for personalised medicine. New Biotechnology, 29(6), 625–633.CrossRefGoogle Scholar
  45. 45.
    Dietel, M., & Sers, C. (2006). Personalized medicine and development of targeted therapies: The upcoming challenge for diagnostic molecular pathology. A review. Virchows Archiv, 448(6), 744–755.CrossRefGoogle Scholar
  46. 46.
    Jain, K. K. (2005). Personalised medicine for cancer: From drug development into clinical practice. Expert Opinion on Pharmacotherapy, 6, 1463–1476.CrossRefGoogle Scholar
  47. 47.
    Jain, K. (2002). Personalized medicine. Current Opinion in Molecular Therapeutics, 4(6), 548–558.Google Scholar
  48. 48.
    Kalow, W. (2002). Pharmacogenetics and personalised medicine. Fundamental & Clinical Pharmacology, 16(5), 337–342.CrossRefGoogle Scholar
  49. 49.
    Mirnezami, R., Nicholson, J., & Darzi, A. (2012). Preparing for precision medicine. New England Journal of Medicine, 366(6), 489–491.CrossRefGoogle Scholar
  50. 50.
    Ziegler, A., Koch, A., Krockenberger, K., & Großhennig, A. (2012). Personalized medicine using DNA biomarkers: A review. Human Genetics, 131(10), 1627–1638.CrossRefGoogle Scholar
  51. 51.
    Flores, M., Glusman, G., Brogaard, K., Price, N. D., & Hood, L. (2013). P4 medicine: How systems medicine will transform the healthcare sector and society. Personalized Medicine, 10(6), 565–576.CrossRefGoogle Scholar
  52. 52.
    Hood, L., & Galas, D. J. (2009). Systems biology and emerging technologies will catalyze the transition from reactive medicine to predictive, personalized, preventive and participatory (P4) medicine. Interdisciplinary Bio Central, 1(1), 6.CrossRefGoogle Scholar
  53. 53.
    Hood, L., & Flores, M. (2012). A personal view on systems medicine and the emergence of proactive P4 medicine: Predictive, preventive, personalized and participatory. New Biotechnology, 29(6), 613–624.CrossRefGoogle Scholar
  54. 54.
    Hood, L., & Friend, S. H. (2011). Predictive, personalized, preventive, participatory (P4) cancer medicine. Nature Reviews Clinical Oncology, 8(3), 184–187.CrossRefGoogle Scholar
  55. 55.
    Ahn, A. C., Tewari, M., Poon, C.-S., & Phillips, R. S. (2006). The limits of reductionism in medicine: Could systems biology offer an alternative? PLoS Medicine, 3(6), e208.CrossRefGoogle Scholar
  56. 56.
    Auffray, C., Chen, Z., & Hood, L. (2009). Systems medicine: The future of medical genomics and healthcare. Genome Medicine, 1(1), 2.CrossRefGoogle Scholar
  57. 57.
    Martin-Sanchez, F., Iakovidis, I., Nørager, S., Maojo, V., de Groen, P., Van der Lei, J., Jones, T., Abraham-Fuchs, K., Apweiler, R., Babic, A., et al. (2004). Synergy between medical informatics and bioinformatics: Facilitating genomic medicine for future health care. Journal of Biomedical Informatics, 37(1), 30–42.CrossRefGoogle Scholar
  58. 58.
    Miller, P. L. (2000). Opportunities at the intersection of bioinformatics and health informatics. Journal of the American Medical Informatics Association, 7(5), 431–438.CrossRefGoogle Scholar
  59. 59.
    Hood, L., Balling, R., & Auffray, C. (2012). Revolutionizing medicine in the 21st century through systems approaches. Biotechnology Journal, 7(8), 992–1001.CrossRefGoogle Scholar
  60. 60.
    Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science, 306(5696), 640–643.CrossRefGoogle Scholar
  61. 61.
    Loscalzo, J., & Barabasi, A.-L. (2011). Systems biology and the future of medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3(6), 619–627.Google Scholar
  62. 62.
    Vidal, M., Cusick, M. E., & Barabasi, A.-L. (2011). Interactome networks and human disease. Cell, 144(6), 986–998.CrossRefGoogle Scholar
  63. 63.
    Noble, D. (2002). The rise of computational biology. Nature Reviews Molecular Cell Biology, 3(6), 459–463.CrossRefGoogle Scholar
  64. 64.
    Kholodenko, B., Yaffe, M. B., & Kolch, W. (2012). Computational approaches for analyzing information flow in biological networks. Science Signaling, 5, 2002961.CrossRefGoogle Scholar
  65. 65.
    Issa, N. T., Byers, S. W., & Dakshanamurthy, S. (2014). Big data: The next frontier for innovation in therapeutics and healthcare. Expert Review of Clinical Pharmacology, 7(3), 293–298.CrossRefGoogle Scholar
  66. 66.
    Ohno-Machado, L. (2012). Big science, big data, and a big role for biomedical informatics. Journal of the American Medical Informatics Association: JAMIA, 19(e1), e1.CrossRefGoogle Scholar
  67. 67.
    Martin-Sanchez, F., Verspoor, K., et al. (2014). Big data in medicine is driving big changes. Yearbook of Medical Informatics, 9(1), 14–20.CrossRefGoogle Scholar
  68. 68.
    Cattell, J., Chilukuri, S., & Levy, M. (2013). How big data can revolutionize pharmaceutical R&D. New York: McKinsey & Company.Google Scholar
  69. 69.
    Sejnowski, T. J., Churchland, P. S., & Movshon, J. A. (2014). Putting big data to good use in neuroscience. Nature Neuroscience, 17(11), 1440–1441.CrossRefGoogle Scholar
  70. 70.
    Andreu-Perez, J., Poon, C. C., Merrifield, R. D., Wong, S. T., & Yang, G.-Z. (2015). Big data for health. IEEE Journal of Biomedical and Health Informatics, 19(4), 1193–1208.CrossRefGoogle Scholar
  71. 71.
    Costa, F. F. (2014). Big data in biomedicine. Drug Discovery Today, 19(4), 433–440.CrossRefGoogle Scholar
  72. 72.
    Chaussabel, D., & Pulendran, B. (2015). A vision and a prescription for big data-enabled medicine. Nature Immunology, 16(5), 435–439.CrossRefGoogle Scholar
  73. 73.
    Slaymaker, M., Power, D., Russell, D., Wilson, G., & Simpson, A. (2008). Accessing and aggregating legacy data sources for healthcare research, delivery and training. In Proceedings of the 2008 ACM Symposium on Applied Computing (pp. 1317–1324). ACM.Google Scholar
  74. 74.
    Patel, V. L., Shortliffe, E. H., Stefanelli, M., Szolovits, P., Berthold, M. R., Bellazzi, R., & Abu-Hanna, A. (2009). The coming of age of artificial intelligence in medicine. Artificial Intelligence in Medicine, 46(1), 5–17.CrossRefGoogle Scholar
  75. 75.
    Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494–499.CrossRefGoogle Scholar
  76. 76.
    Good, I. J. (1965). Speculations concerning the first ultraintelligent machine. Advances in Computers, 6(99), 31–83.Google Scholar
  77. 77.
    Goertzel, B. (2007). Human-level artificial general intelligence and the possibility of a technological singularity: A reaction to Ray Kurzweil’s The Singularity Is Near, and McDermott’s critique of Kurzweil. Artificial Intelligence, 171(18), 1161–1173.CrossRefGoogle Scholar
  78. 78.
    Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies. Oxford: Oxford University Press.Google Scholar
  79. 79.
    Kurzweil, R. (2000). The age of spiritual machines: When computers exceed human intelligence. New York: Penguin.Google Scholar
  80. 80.
    Steels, L. (1996). “The origins of intelligence”.Google Scholar
  81. 81.
    Legg, S., Hutter, M., et al. (2007). A collection of definitions of intelligence. Frontiers in Artificial Intelligence and applications, 157, 17.Google Scholar
  82. 82.
    Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444.CrossRefGoogle Scholar
  83. 83.
    Legg, S., & Hutter, M. (2006). A formal measure of machine intelligence. arXiv preprint cs/0605024.Google Scholar
  84. 84.
    Mahoney, M. V. (1999). Text compression as a test for artificial intelligence. In AAAI/IAAI (p. 970), AAAI Press.Google Scholar
  85. 85.
    Hernandez-Orallo, J. (2000). Beyond the Turing test. Journal of Logic, Language and Information, 9(4), 447–466.zbMATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    Yonck, R. (2012). Toward a standard metric of machine intelligence. World Future Review, 4(2), 61–70.CrossRefGoogle Scholar
  87. 87.
    Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.CrossRefMathSciNetGoogle Scholar
  88. 88.
    Whitby, B. (1996). Why the turing test is ai’s biggest blind alley. In Machines and thoughts (pp. 53–62). Oxford: Clarendon Press.Google Scholar
  89. 89.
    Hayes, P., & Ford, K. (1995). Turing test considered harmful. In IJCAI, 1, 972–977.Google Scholar
  90. 90.
    Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(03), 417–424.CrossRefGoogle Scholar
  91. 91.
    Bringsjord, S., Bello, P., & Ferrucci, D. (2003). Creativity, the Turing test, and the (better) Lovelace test. In The Turing test (pp. 215–239). Dordrecht: Springer.Google Scholar
  92. 92.
    Krause, J., Ruxton, G. D., & Krause, S. (2010). Swarm intelligence in animals and humans. Trends in Ecology & Evolution, 25(1), 28–34.CrossRefGoogle Scholar
  93. 93.
    Park, H.-J., Kim, B. K., & Lim, K. Y. (2001). Measuring the machine intelligence quotient (MIQ) of human-machine cooperative systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and humans, 31(2), 89–96.CrossRefGoogle Scholar
  94. 94.
    Parpinelli, R. S., & Lopes, H. S. (2011). New inspirations in swarm intelligence: A survey. International Journal of Bio-Inspired Computation, 3(1), 1–16.CrossRefGoogle Scholar
  95. 95.
    Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F., & Sumpter, D. J. (2002). Information flow, opinion polling and collective intelligence in house– Hunting social insects. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357(1427), 1567–1583.CrossRefGoogle Scholar
  96. 96.
    Tereshko, V., & Loengarov, A. (2005). Collective decision making in honeybee foraging dynamics. Computing and Information Systems, 9(3), 1.Google Scholar
  97. 97.
    Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence. Oxford: Oxford University Press.zbMATHGoogle Scholar
  98. 98.
    Nakagaki, T., Yamada, H., & T´oth, A. (2000). Intelligence: Maze-solving´ by an amoeboid organism. Nature, 407(6803), 470–470.CrossRefGoogle Scholar
  99. 99.
    Adamatzky, A., Armstrong, R., Jones, J., & Gunji, Y.-P. (2013). On creativity of slime mould. International Journal of General Systems, 42(5), 441–457.zbMATHCrossRefGoogle Scholar
  100. 100.
    Trewavas, A. (2005). Plant intelligence. Naturwissenschaften, 92(9), 401–413.CrossRefGoogle Scholar
  101. 101.
    Trewavas, A. (2005). Green plants as intelligent organisms. Trends in Plant Science, 10(9), 413–419.CrossRefGoogle Scholar
  102. 102.
    Bishop, C. M. (1994). Neural networks and their applications. Review of Scientific Instruments, 65(6), 1803–1832.CrossRefGoogle Scholar
  103. 103.
    Simon, H. A. (1957). Models of man; social and rational. New York: Wiley.zbMATHGoogle Scholar
  104. 104.
    Klingberg, T. (2000). Limitations in information processing in the human brain: Neuroimaging of dual task performance and working memory tasks. Progress in Brain Research, 126, 95–102.CrossRefGoogle Scholar
  105. 105.
    Domingos, P. (2015). The master algorithm: How the quest for the ultimate learning machine will remake our world. New York: Basic Books.Google Scholar
  106. 106.
    Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, 19(3), 113–126.CrossRefMathSciNetGoogle Scholar
  107. 107.
    Back, T., Hammel, U., & Schwefel, H.-P. (1997). Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1), 3–17.CrossRefGoogle Scholar
  108. 108.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.zbMATHGoogle Scholar
  109. 109.
    Vapnik, V. N. (1999). An overview of statistical learning theory. Neural Networks, IEEE Transactions on, 10(5), 988–999.CrossRefGoogle Scholar
  110. 110.
    Vapnik, V. (1995). The nature of statistical learning theory. Data Mining and Knowledge Discovery, 6, 1–47.zbMATHGoogle Scholar
  111. 111.
    Bayes, M., & Price, M. (1763). An essay towards solving a problem in the doctrine of chances. by the late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfrs. Philosophical Transactions (1683–1775), 53, 370–418.Google Scholar
  112. 112.
    Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge University Press.Google Scholar
  113. 113.
    Cios, K. J., & Moore, G. W. (2002). Uniqueness of medical data mining. Artificial Intelligence in Medicine, 26(1), 1–24.CrossRefGoogle Scholar
  114. 114.
    Papik, K., Molnar, B., Schaefer, R., Dombovari, Z., Tulassay, Z., & Feher, J. (1998). Application of neural networks in medicine – A review. Medical Science Monitor, 4(3), MT538–MT546.Google Scholar
  115. 115.
    Subasi, A. (2006). Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Systems with Applications, 31(2), 320–328.CrossRefMathSciNetGoogle Scholar
  116. 116.
    Kim, J., Shin, H. S., Shin, K., & Lee, M. (2009). Robust algorithm for arrhythmia classification in ECG using extreme learning machine. Biomedical Engineering Online, 8(1), 1.CrossRefGoogle Scholar
  117. 117.
    Wajid, S. K., Hussain, A., & Luo, B. (2014). An efficient computer aided decision support system for breast cancer diagnosis using echo state network classifier. In Computational Intelligence in Healthcare and e-health (CICARE), 2014 IEEE Symposium on (pp. 17–24). IEEE.Google Scholar
  118. 118.
    Cheng, K.-S., Lin, J.-S., & Mao, C.-W. (1996). The application of competitive Hopfield neural network to medical image segmentation. IEEE Transactions on Medical Imaging, 15(4), 560–567.CrossRefGoogle Scholar
  119. 119.
    Roth, H. R., Yao, J., Lu, L., Stieger, J., Burns, J. E., & Summers, R. M. (2015). Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications. In Recent advances in computational methods and clinical applications for spine imaging (pp. 3–12). Cham: Springer.Google Scholar
  120. 120.
    Hammerla, N. Y., Fisher, J., Andras, P., Rochester, L., Walker, R., & Plo¨tz, T. (2015). PD disease state assessment in naturalistic environments using deep learning. In AAAI (pp. 1742–1748).Google Scholar
  121. 121.
    Akay, M. F. (2009). Support vector machines combined with feature selection for breast cancer diagnosis. Expert Systems with Applications, 36(2), 3240–3247.CrossRefGoogle Scholar
  122. 122.
    Razzaghi, T., Roderick, O., Safro, I., & Marko, N. (2016). Multilevel weighted support vector machine for classification on healthcare data with missing values. PloS One, 11(5), e0155119.CrossRefGoogle Scholar
  123. 123.
    Keller, B. M., Nathan, D. L., Wang, Y., Zheng, Y., Gee, J. C., Conant, E. F., & Kontos, D. (2012). Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Medical Physics, 39(8), 4903–4917.CrossRefGoogle Scholar
  124. 124.
    Karaolis, M. A., Moutiris, J. A., Hadjipanayi, D., & Pattichis, C. S. (2010). Assessment of the risk factors of coronary heart events based on data mining with decision trees. IEEE Transactions on Information Technology in Biomedicine, 14(3), 559–566.CrossRefGoogle Scholar
  125. 125.
    Freitas, A., Costa-Pereira, A., & Brazdil, P. (2007). Cost-sensitive decision trees applied to medical data. In International Conference on Data Warehousing and Knowledge Discovery (pp. 303–312). Springer.Google Scholar
  126. 126.
    Khan, M. U., Choi, J. P., Shin, H., & Kim, M. (2008). Predicting breast cancer survivability using fuzzy decision trees for personalized healthcare. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5148–5151). IEEE.Google Scholar
  127. 127.
    Khalilia, M., Chakraborty, S., & Popescu, M. (2011). Predicting disease risks from highly imbalanced data using random forest. BMC Medical Informatics and Decision Making, 11(1), 51.CrossRefGoogle Scholar
  128. 128.
    Wei, W., Visweswaran, S., & Cooper, G. F. (2011). The application of naive Bayes model averaging to predict Alzheimer’s disease from genome-wide data. Journal of the American Medical Informatics Association, 18(4), 370–375.CrossRefGoogle Scholar
  129. 129.
    Gevaert, O., De Smet, F., Timmerman, D., Moreau, Y., & De Moor, B. (2006). Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 22(14), e184–e190.CrossRefGoogle Scholar
  130. 130.
    Shouman, M., Turner, T., & Stocker, R. (2012). Applying k-nearest neighbour in diagnosing heart disease patients. International Journal of Information and Education Technology, 2(3), 220.CrossRefGoogle Scholar
  131. 131.
    Hayat, M., & Khan, A. (2012). Discriminating outer membrane proteins with fuzzy K-nearest neighbor algorithms based on the general form of Chou’s PseAAC. Protein and Peptide Letters, 19(4), 411–421.CrossRefGoogle Scholar
  132. 132.
    Holt, A., Bichindaritz, I., Schmidt, R., & Perner, P. (2005). Medical applications in case-based reasoning. The Knowledge Engineering Review, 20(03), 289–292.CrossRefGoogle Scholar
  133. 133.
    Cooper, B., & Lipsitch, M. (2004). The analysis of hospital infection data using hidden Markov models. Biostatistics, 5(2), 223–237.zbMATHCrossRefGoogle Scholar
  134. 134.
    Thomas, E., Temko, A., Lightbody, G., Marnane, W., & Boylan, G. (2010). Gaussian mixture models for classification of neonatal seizures using EEG. Physiological Measurement, 31(7), 1047.CrossRefGoogle Scholar
  135. 135.
    McKinney, B. A., Reif, D. M., Ritchie, M. D., & Moore, J. H. (2006). Machine learning for detecting gene-gene interactions. Applied Bioinformatics, 5(2), 77–88.CrossRefGoogle Scholar
  136. 136.
    Polat, K., S¸ahan, S., & Gu¨ne¸s, S. (2006). A new method to medical diagnosis: Artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia. Expert Systems with Applications, 31(2), 264–269.CrossRefGoogle Scholar
  137. 137.
    Manju, A., & Nigam, M. J. (2014). Applications of quantum inspired computational intelligence: A survey. Artificial Intelligence Review, 42(1), 79–156.CrossRefGoogle Scholar
  138. 138.
    Vilalta, R., Giraud-Carrier, C., & Brazdil, P. (2010). Meta-learning-concepts and techniques. In Data mining and knowledge discovery handbook (pp. 717–731). New York: Springer.Google Scholar
  139. 139.
    Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., & Qu, R. (2009). A survey of hyper-heuristics (Computer science technical report no. NOTTCS-TR-SUB-0906241418-2747). School of Computer Science and Information Technology, University of Nottingham.Google Scholar
  140. 140.
    Gupta, S., Kulhara, P., et al. (2010). What is schizophrenia: A neurodevelopmental or neurodegenerative disorder or a combination of both? A critical analysis. Indian Journal of Psychiatry, 52(1), 21.CrossRefGoogle Scholar
  141. 141.
    McCrone, P. R., Dhanasiri, S., Patel, A., Knapp, M., & Lawton-Smith, S. (2008). Paying the price: The cost of mental health care in England to 2026. London: King’s Fund.Google Scholar
  142. 142.
    Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J., Erskine, H. E., Charlson, F. J., Norman, R. E., Flaxman, A. D., Johns, N., et al. (2013). Global burden of disease attributable to mental and substance use disorders: Findings from the global burden of disease study 2010. The Lancet, 382(9904), 1575–1586.CrossRefGoogle Scholar
  143. 143.
    Tandon, R., Gaebel, W., Barch, D. M., Bustillo, J., Gur, R. E., Heckers, S., Malaspina, D., Owen, M. J., Schultz, S., Tsuang, M., et al. (2013). Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 150(1), 3–10.CrossRefGoogle Scholar
  144. 144.
    Gallagher, S. (2004). Neurocognitive models of schizophrenia: A neurophenomenological critique. Psychopathology, 37(1), 8–19.CrossRefGoogle Scholar
  145. 145.
    Craddock, N., & Owen, M. J. (2010). The Kraepelinian dichotomy–going, going... But still not gone. The British Journal of Psychiatry, 196(2), 92–95.CrossRefGoogle Scholar
  146. 146.
    Elkis, H. (2016). Treatment-resistant schizophrenia. Psychiatric Clinics of North America, 39(2), 239–265.CrossRefGoogle Scholar
  147. 147.
    Bilder, R. M., Mukherjee, S., Rieder, R. O., & Pandurangi, A. K. (1985). Symptomatic and neuropsychological components of defect states. Schizophrenia Bulletin, 11(3), 409.CrossRefGoogle Scholar
  148. 148.
    Warren, J. B., Lambert, W. E., Fu, R., Anderson, J. M., & Edelman, A. B. (2012). Global neonatal and perinatal mortality: A review and case study for the Loreto Province of Peru. Research and Reports in Neonatology. Dovepress, 2, 103–113.CrossRefGoogle Scholar
  149. 149.
    Brown, R., Wijekoon, J. H., Fernando, A., Johnstone, E. D., & Heazell, A. E. (2014). Continuous objective recording of fetal heart rate and fetal movements could reliably identify fetal compromise, which could reduce stillbirth rates by facilitating timely management. Medical Hypotheses, 83(3), 410–417.CrossRefGoogle Scholar
  150. 150.
    Rees, S., & Inder, T. (2005). Fetal and neonatal origins of altered brain development. Early Human Development, 81(9), 753–761.CrossRefGoogle Scholar
  151. 151.
    Rees, S., Harding, R., & Walker, D. (2008). An adverse intrauterine environment: Implications for injury and altered development of the brain. International Journal of Developmental Neuroscience, 26(1), 3–11.CrossRefGoogle Scholar
  152. 152.
    Ugwumadu, A. (2014). Are we (mis) guided by current guidelines on intrapartum fetal heart rate monitoring? Case for a more physiological approach to interpretation. BJOG: An International Journal of Obstetrics & Gynaecology, 121(9), 1063–1070.CrossRefGoogle Scholar
  153. 153.
    Pinto, P., Bernardes, J., Costa-Santos, C., Amorim-Costa, C., Silva, M., & Ayres-de Campos, D. (2014). Development and evaluation of an algorithm for computer analysis of maternal heart rate during labor. Computers in Biology and Medicine, 49, 30–35.CrossRefGoogle Scholar
  154. 154.
    Kessler, J., Moster, D., & Albrechtsen, S. (2014). Delay in intervention increases neonatal morbidity in births monitored with cardiotocography and ST-waveform analysis. Acta Obstetricia et Gynecologica Scandinavica, 93(2), 175–181.CrossRefGoogle Scholar
  155. 155.
    Chud´ǎcek, V., Spilka, J., Burˇsa, M., Jank, P., Hruban, L., Huptych, M., & Lhotska´, L. (2014). Open access intrapartum CTG database. BMC Pregnancy and Childbirth, 14(1), 1.Google Scholar
  156. 156.
    Kreyszig, E. (2005). Advanced engineering mathematics (9th ed.p. 816). New York: wiley.Google Scholar
  157. 157.
    Gysels, E., Renevey, P., & Celka, P. (2005). SVM-based recursive feature elimination to compare phase synchronization computed from broadband and narrowband EEG signals in brain–computer interfaces. Signal Processing, 85(11), 2178–2189.zbMATHCrossRefGoogle Scholar
  158. 158.
    Abry, P., Roux, S. G., Chud´ǎcek, V., Borgnat, P., Gon,calves, P., & Doret, M. (2013). Hurst exponent and intrapartum fetal heart rate: Impact of decelerations. In Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems (pp. 131–136). IEEE.Google Scholar
  159. 159.
    Schiermeier, S., van Leeuwen, P., Lange, S., Geue, D., Daumer, M., Reinhard, J., Gro¨nemeyer, D., & Hatzmann, W. (2007). Fetal heart rate variation in magnetocardiography and cardiotocography–a direct comparison of the two methods. Zeitschrift fur Geburtshilfe und Neonatologie, 211(5), 179–184.CrossRefGoogle Scholar
  160. 160.
    Spilka, J., Chud´ǎcek, V., Koucky`, M., Lhotsk´a, L., Huptych, M., Jank, P., Georgoulas, G., & Stylios, C. (2012). Using nonlinear features for fetal heart rate classification. Biomedical Signal Processing and Control, 7(4), 350–357.Google Scholar
  161. 161.
    Signorini, M. G., Fanelli, A., & Magenes, G. (2014). Monitoring fetal heart rate during pregnancy: Contributions from advanced signal processing and wearable technology. Computational and Mathematical Methods in Medicine, 2014, 1–10.CrossRefGoogle Scholar
  162. 162.
    of the European Society of Cardiology, T. F, et al. (1996). Heart rate variability standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17, 354–381.CrossRefGoogle Scholar
  163. 163.
    Blagus, R., & Lusa, L. (2002). SMOTE for high-dimensional Class Imbalanced data. BMC Bioinformatics, 16, 321–357.Google Scholar
  164. 164.
    Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.zbMATHGoogle Scholar
  165. 165.
    Organization, W. H, et al. (2012). Born too soon: The global action report on preterm birth. Geneva: World Health Organization.Google Scholar
  166. 166.
    Pooley, J. (2013). Gestation-specific infant mortality in England and Wales, 2011. London, UK: UK National Statstics.Google Scholar
  167. 167.
    Lucovnik, M., Maner, W. L., Chambliss, L. R., Blumrick, R., Balducci, J., Novak-Antolic, Z., & Garfield, R. E. (2011). Noninvasive uterine electromyography for prediction of preterm delivery. American Journal of Obstetrics and Gynecology, 204(3), 228–2e1.CrossRefGoogle Scholar
  168. 168.
    PhysioNet. (2012). The Term-Preterm EHG Database (TPEHG-DB). physionet.org.
  169. 169.
    Leman, H., Marque, C., & Gondry, J. (1999). Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Transactions on Biomedical Engineering, 46(10), 1222–1229.CrossRefGoogle Scholar
  170. 170.
    Maner, W. L., Garfield, R. E., Maul, H., Olson, G., & Saade, G. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254–1260.Google Scholar
  171. 171.
    Fele-Zorˇz, G., Kavˇsek, G., Novak-Antoliˇ c, ˇ. Z., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911–922.CrossRefGoogle Scholar
  172. 172.
    Phinyomark, A., Limsakul, C., & Phukpattaranont, P. (2009). A novel feature extraction for robust EMG pattern recognition. arXiv preprint arXiv:0912.3973.Google Scholar
  173. 173.
    Phinyomark, A., Nuidod, A., Phukpattaranont, P., & Limsakul, C. (2012). Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification. Elektronika ir Elektrotechnika, 122(6), 27–32.CrossRefGoogle Scholar
  174. 174.
    Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049.Google Scholar
  175. 175.
    Weatherall, D. J. (2013). The role of the inherited disorders of hemoglobin, the first molecular diseases, in the future of human genetics. Annual Review of Genomics and Human Genetics, 14, 1–24.CrossRefGoogle Scholar
  176. 176.
    Weatherall, D. J. (2010). The importance of micromapping the gene frequencies for the common inherited disorders of haemoglobin. British Journal of Haematology, 149(5), 635–637.CrossRefGoogle Scholar
  177. 177.
    Weatherall, D. J. (2010). The inherited diseases of hemoglobin are an emerging global health burden. Blood, 115(22), 4331–4336.CrossRefGoogle Scholar
  178. 178.
    Kosaryan, M., Karami, H., Zafari, M., & Yaghobi, N. (2014). Report on patients with non transfusion-dependent β-thalassemia major being treated with hydroxyurea attending the Thalassemia Research Center, Sari, Mazandaran Province, Islamic Republic of Iran in 2013. Hemoglobin, 38(2), 115–118.CrossRefGoogle Scholar
  179. 179.
    Magoulas, G. D., & Prentza, A. (2001). Machine learning in medical applications. In Machine Learning and its applications (pp. 300–307). Berlin: Springer.Google Scholar
  180. 180.
    Consortium, G. P., et al. (2010). A map of human genome variation from population-scale sequencing. Nature, 467(7319), 1061–1073.CrossRefGoogle Scholar
  181. 181.
    Bush, W. S., & Moore, J. H. (2012). Genome-wide association studies. PLoS Computational Biology, 8(12), e1002822.CrossRefGoogle Scholar
  182. 182.
    Burton, P. R., Clayton, D. G., Cardon, L. R., Craddock, N., Deloukas, P., Duncanson, A., Kwiatkowski, D. P., McCarthy, M. I., Ouwehand, W. H., Samani, N. J., et al. (2007). Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 447(7145), 661–678.CrossRefGoogle Scholar
  183. 183.
    Tabangin, M. E., Woo, J. G., & Martin, L. J. (2009). The effect of minor allele frequency on the likelihood of obtaining false positives. In BMC proceedings (Vol. 3, p. S41). BioMed Central Ltd.Google Scholar
  184. 184.
    Lam, A. C., Schouten, M., Aulchenko, Y. S., Haley, C. S., & de Koning, D.-J. (2007). Rapid and robust association mapping of expression quantitative trait loci. In BMC Proceedings (Vol. 1, p. S144). BioMed Central Ltd.Google Scholar
  185. 185.
    Florez, J. C., Manning, A. K., Dupuis, J., McAteer, J., Irenze, K., Gianniny, L., Mirel, D. B., Fox, C. S., Cupples, L. A., & Meigs, J. B. (2007). A 100K genome-wide association scan for diabetes and related traits in the Framingham Heart Study: Replication and integration with other genome-wide datasets. Diabetes, 56, 3063–3074.CrossRefGoogle Scholar
  186. 186.
    Anderson, C. A., Pettersson, F. H., Clarke, G. M., Cardon, L. R., Morris, A. P., & Zondervan, K. T. (2010). Data quality control in genetic case-control association studies. Nature Protocols, 5(9), 1564–1573.CrossRefGoogle Scholar
  187. 187.
    Laurie, C. C., Doheny, K. F., Mirel, D. B., Pugh, E. W., Bierut, L. J., Bhangale, T., Boehm, F., Caporaso, N. E., Cornelis, M. C., Edenberg, H. J., et al. (2010). Quality control and quality assurance in genotypic data for genome-wide association studies. Genetic Epidemiology, 34(6), 591–602.CrossRefGoogle Scholar
  188. 188.
    Qiu, L., Na, R., Xu, R., Wang, S., Sheng, H., Wu, W., & Qu, Y. (2014). Quantitative assessment of the effect of KCNJ11 gene polymorphism on the risk of type 2 diabetes. PloS One, 9(4), e93961.CrossRefGoogle Scholar
  189. 189.
    Consortium, D. S., Consortium, D. M., Mahajan, A., Go, M. J., Zhang, W., Below, J. E., Gaulton, K. J., Ferreira, T., Horikoshi, M., Johnson, A. D., et al. (2014). Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 46(3), 234–244.CrossRefGoogle Scholar
  190. 190.
    Phani, N. M., Guddattu, V., Bellampalli, R., Seenappa, V., Adhikari, P., Nagri, S. K., Sydney, C., Mundyat, G. P., Satyamoorthy, K., Rai, P. S., et al. (2014). Population specific impact of genetic variants in KCNJ11 gene to type 2 diabetes: A case-control and meta-analysis study. PloS One, 9(9), e107021.CrossRefGoogle Scholar
  191. 191.
    Cheema, A. K., Li, T., Liuzzi, J. P., Zarini, G. G., Dorak, M. T., & Huffman, F. G. (2015). Genetic associations of PPARGC1A with type 2 diabetes: Differences among populations with African origins. Journal of Diabetes Research, 2015, 921274.CrossRefGoogle Scholar
  192. 192.
    James, W. (2008). WHO recognition of the global obesity epidemic. International Journal of Obesity, 32, S120–S126.CrossRefGoogle Scholar
  193. 193.
    Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson, A. U., Allen, H. L., Lindgren, C. M., Luan, J., Ma¨gi, R., et al. (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 42(11), 937–948.CrossRefGoogle Scholar
  194. 194.
    Harbron, J., Van der Merwe, L., Zaahl, M. G., Kotze, M. J., & Senekal, M. (2014). Fat mass and obesity-associated (FTO) gene polymorphisms are associated with physical activity, food intake, eating behaviors, psychological health, and modeled change in body mass index in overweight/obese Caucasian adults. Nutrients, 6(8), 3130–3152.CrossRefGoogle Scholar
  195. 195.
    Freemark, M. S. (2010). Pediatric obesity. New York: Springer.CrossRefGoogle Scholar
  196. 196.
    Poloz, Y., & Stambolic, V. (2015). Obesity and cancer, a case for insulin signaling. Cell Death & Disease, 6(12), e2037.CrossRefGoogle Scholar
  197. 197.
    Bullen, V., & Feenie, V. (2015). The human cost of failing to address obesity. British Journal of Obesity, 1, 19–24.Google Scholar
  198. 198.
    Rao, K. R., Lal, N., & Giridharan, N. (2014). Genetic & epigenetic approach to human obesity. The Indian Journal of Medical Research, 140(5), 589.Google Scholar
  199. 199.
    Hung, C.-F., Breen, G., Czamara, D., Corre, T., Wolf, C., Kloiber, S., Bergmann, S., Craddock, N., Gill, M., Holsboer, F., et al. (2015). A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. BMC Medicine, 13(1), 1.CrossRefGoogle Scholar
  200. 200.
    Van Dijk, S., Molloy, P., Varinli, H., Morrison, J., Muhlhausler, B., Buckley, M., Clark, S., McMillen, I., Noakes, M., Samaras, K., et al. (2015). Epigenetics and human obesity. International Journal of Obesity, 39(1), 85–97.CrossRefGoogle Scholar
  201. 201.
    Loos, R. J. (2012). Genetic determinants of common obesity and their value in prediction. Best Practice & Research Clinical Endocrinology & Metabolism, 26(2), 211–226.CrossRefGoogle Scholar
  202. 202.
    Pirmohamed, M. (2011). Pharmacogenetics: Past, present and future. Drug Discovery Today, 16(19), 852–861.CrossRefGoogle Scholar
  203. 203.
    Mardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends in Genetics, 24(3), 133–141.CrossRefGoogle Scholar
  204. 204.
    Sung, W.-K. (2012). Bioinformatics applications in genomics. Computer, 45(6), 57–63.CrossRefGoogle Scholar
  205. 205.
    Samish, I., Bourne, P. E., & Najmanovich, R. J. (2015). Achievements and challenges in structural bioinformatics and computational biophysics. Bioinformatics, 31(1), 146–150.CrossRefGoogle Scholar
  206. 206.
    Higdon, R., Haynes, W., Stanberry, L., Stewart, E., Yandl, G., Howard, C., Broomall, W., Kolker, N., & Kolker, E. (2013). Unraveling the complexities of life sciences data. Big Data, 1(1), 42–50.CrossRefGoogle Scholar
  207. 207.
    Rudin, C., Dunson, D., Irizarry, R., Ji, H., Laber, E., Leek, J., McCormick, T., Rose, S., Schafer, C., Van der Laan, M., et al. (2014). Discovery with data: Leveraging statistics with computer science to transform science and society. ASA (American Statistical Association).Google Scholar
  208. 208.
    Tanwani, A. K., Afridi, J., Shafiq, M. Z., & Farooq, M. (2009). Guidelines to select machine learning scheme for classification of biomedical datasets. In Evolutionary computation, machine learning and data mining in bioinformatics (pp. 128–139). Berlin/Heidelberg: Springer.Google Scholar
  209. 209.
    Sheehan, S., & Song, Y. S. (2016). Deep learning for population genetic inference. PLoS Computational Biology, 12(3), e1004845.CrossRefGoogle Scholar
  210. 210.
    Rabbani, B., Tekin, M., & Mahdieh, N. (2014). The promise of whole-exome sequencing in medical genetics. Journal of Human Genetics, 59(1), 5–15.CrossRefGoogle Scholar
  211. 211.
    Upstill-Goddard, R., Eccles, D., Fliege, J., & Collins, A. (2012). Machine learning approaches for the discovery of gene–gene interactions in disease data. Briefings in Bioinformatics, 14, bbs024.Google Scholar
  212. 212.
    Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. New England Journal of Medicine, 363(2), 166–176.CrossRefGoogle Scholar
  213. 213.
    Moore, J. H., Asselbergs, F. W., & Williams, S. M. (2010). Bioinformatics challenges for genome-wide association studies. Bioinformatics, 26(4), 445–455.CrossRefGoogle Scholar
  214. 214.
    Niel, C., Sinoquet, C., Dina, C., & Rocheleau, G. (2015). A survey about methods dedicated to epistasis detection. Frontiers in Genetics, 6, 285.CrossRefGoogle Scholar
  215. 215.
    Montan˜ ez, C. A. C., Fergus, P., Hussain, A., Al-Jumeily, D., Abdulaimma, B., & Al-Askar, H. (2016). A genetic analytics approach for risk variant identification to support intervention strategies for people susceptible to polygenic obesity and overweight. In International Conference on Intelligent Computing (pp. 808–819). Springer.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Robert Keight
    • 1
  • Dhiya Al-Jumeily
    • 1
  • Abir Hussain
    • 1
  • Paul Fergus
    • 1
  • Jamila Mustafina
    • 2
  1. 1.Faculty of Engineering and TechnologyLiverpool John Moores UniversityLiverpoolUK
  2. 2.Kazan Federal UniversityKazanRussia

Personalised recommendations