The BigDataEurope Platform – Supporting the Variety Dimension of Big Data

  • Sören Auer
  • Simon Scerri
  • Aad Versteden
  • Erika Pauwels
  • Angelos Charalambidis
  • Stasinos Konstantopoulos
  • Jens Lehmann
  • Hajira Jabeen
  • Ivan Ermilov
  • Gezim Sejdiu
  • Andreas Ikonomopoulos
  • Spyros Andronopoulos
  • Mandy Vlachogiannis
  • Charalambos Pappas
  • Athanasios Davettas
  • Iraklis A. Klampanos
  • Efstathios Grigoropoulos
  • Vangelis Karkaletsis
  • Victor de Boer
  • Ronald Siebes
  • Mohamed Nadjib Mami
  • Sergio Albani
  • Michele Lazzarini
  • Paulo Nunes
  • Emanuele Angiuli
  • Nikiforos Pittaras
  • George Giannakopoulos
  • Giorgos Argyriou
  • George Stamoulis
  • George Papadakis
  • Manolis Koubarakis
  • Pythagoras Karampiperis
  • Axel-Cyrille Ngonga Ngomo
  • Maria-Esther Vidal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10360)

Abstract

The management and analysis of large-scale datasets – described with the term Big Data – involves the three classic dimensions volume, velocity and variety. While the former two are well supported by a plethora of software components, the variety dimension is still rather neglected. We present the BDE platform – an easy-to-deploy, easy-to-use and adaptable (cluster-based and standalone) platform for the execution of big data components and tools like Hadoop, Spark, Flink, Flume and Cassandra. The BDE platform was designed based upon the requirements gathered from seven of the societal challenges put forward by the European Commission in the Horizon 2020 programme and targeted by the BigDataEurope pilots. As a result, the BDE platform allows to perform a variety of Big Data flow tasks like message passing, storage, analysis or publishing. To facilitate the processing of heterogeneous data, a particular innovation of the platform is the Semantic Layer, which allows to directly process RDF data and to map and transform arbitrary data into RDF. The advantages of the BDE platform are demonstrated through seven pilots, each focusing on a major societal challenge.

References

  1. 1.
    Auer, S., Bryl, V., Tramp, S. (eds.): Linked Open Data – Creating Knowledge Out of Interlinked Data. LNCS, vol. 8661. Springer, Cham (2014)Google Scholar
  2. 2.
    Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: Semagrow: optimizing federated SPARQL queries. In: SEMANTiCS (2015)Google Scholar
  3. 3.
    Big Data Europe. WP2 deliverable: Report on interest groups workshops III (2016)Google Scholar
  4. 4.
    Big Data Europe. WP6 deliverable: Pilot evaluation and community specific assessment (2016)Google Scholar
  5. 5.
    Grady, R.B.: Practical Software Metrics for Project Management and Process Improvement. Prentice Hall, Upper Saddle River (1992)Google Scholar
  6. 6.
    Konstantopoulos, S., Charalambidis, A., Mouchakis, G., Troumpoukis, A., Jakobitch, J., Karkaletsis, V.: Semantic web technologies and big data infrastructures: SPARQL federated querying of heterogeneous big data stores. In: ISWC Demos and Posters Track (2016)Google Scholar
  7. 7.
    Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a semantic geospatial DBMS. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 295–311. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1_19 CrossRefGoogle Scholar
  8. 8.
    Kyzirakos, K., Vlachopoulos, I., Savva, D., Manegold, S., Koubarakis, M.: Geotriples: a tool for publishing geospatial data as RDF graphs using R2RML mappings. In: ISWC Posters & Demonstrations Track (2014)Google Scholar
  9. 9.
    Nikolaou, C., Dogani, K., Bereta, K., Garbis, G., Karpathiotakis, M., Kyzirakos, K., Koubarakis, M.: Sextant: visualizing time-evolving linked geospatial data. J. Web Sem. 35, 35–52 (2015)CrossRefGoogle Scholar
  10. 10.
    Williams, A.J., Harland, L., Groth, P., Pettifer, S., Chichester, C., Willighagen, E.L., Evelo, C.T., Blomberg, N., Ecker, G., Goble, C., Mons, B.: Open PHACTS: semantic interoperability for drug discovery. Drug Discov. Today 17(21–22), 1188–1198 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sören Auer
    • 1
  • Simon Scerri
    • 1
  • Aad Versteden
    • 1
  • Erika Pauwels
    • 1
  • Angelos Charalambidis
    • 1
  • Stasinos Konstantopoulos
    • 1
  • Jens Lehmann
    • 1
  • Hajira Jabeen
    • 1
  • Ivan Ermilov
    • 1
  • Gezim Sejdiu
    • 1
  • Andreas Ikonomopoulos
    • 1
  • Spyros Andronopoulos
    • 1
  • Mandy Vlachogiannis
    • 1
  • Charalambos Pappas
    • 1
  • Athanasios Davettas
    • 1
  • Iraklis A. Klampanos
    • 1
  • Efstathios Grigoropoulos
    • 1
  • Vangelis Karkaletsis
    • 1
  • Victor de Boer
    • 1
  • Ronald Siebes
    • 1
  • Mohamed Nadjib Mami
    • 1
  • Sergio Albani
    • 1
  • Michele Lazzarini
    • 1
  • Paulo Nunes
    • 1
  • Emanuele Angiuli
    • 1
  • Nikiforos Pittaras
    • 1
  • George Giannakopoulos
    • 1
  • Giorgos Argyriou
    • 1
  • George Stamoulis
    • 1
  • George Papadakis
    • 1
  • Manolis Koubarakis
    • 1
  • Pythagoras Karampiperis
    • 1
  • Axel-Cyrille Ngonga Ngomo
    • 1
  • Maria-Esther Vidal
    • 1
  1. 1.The H2020 BigDataEurope Project Consortium, c/o Fraunhofer IAISSankt AugustinGermany

Personalised recommendations