Advertisement

Dynamic Searchable Symmetric Encryption with Physical Deletion and Small Leakage

  • Peng XuEmail author
  • Shuai Liang
  • Wei Wang
  • Willy Susilo
  • Qianhong Wu
  • Hai Jin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10342)

Abstract

Dynamic Searchable Symmetric Encryption (DSSE) allows a client not only to search over ciphertexts as the traditional searchable symmetric encryption does, but also to update these ciphertexts according to requirements, e.g., adding or deleting some ciphertexts. It has been recognized as a fundamental and promising method to build secure cloud storage. In this paper, we propose a new DSSE scheme to overcome the drawbacks of previous schemes. The biggest challenge is to realize the physical deletion of ciphertexts with small leakage. We employ both logical and physical deletions, and run physical deletion in due course to avoid extra information leakage. Our instantiation achieves noticeable improvements throughout all following aspects: search performance, storage cost, functionality, and information leakage when operating its functions. We also demonstrate its provable security under adaptive attacks and practical performance according to experimental results.

Keywords

Time Cost Random Oracle Information Leakage Small Leakage Provable Security 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The paper is partly supported by the National Natural Science Foundation of China under grant no. 61472156, the National Program on Key Basic Research Project (973 Program) under grant no. 2014CB340600, and the Natural Science Foundation of China under grant no. 61672083 and 61370190.

References

  1. 1.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: ACM CCS 2012, pp. 965–976. ACM (2012)Google Scholar
  2. 2.
    Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39884-1_22 CrossRefGoogle Scholar
  3. 3.
    Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Ros, M.C., Steiner, M.: Dynamic searchable encryption in very-large databases: data structures and implementation. In: NDSS (2014)Google Scholar
  4. 4.
    Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS (2014)Google Scholar
  5. 5.
    Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: IEEE SP 2000, pp. 44–55. IEEE (2000)Google Scholar
  6. 6.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 563–574. ACM (2004)Google Scholar
  7. 7.
    Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). doi: 10.1007/11496137_30 CrossRefGoogle Scholar
  8. 8.
    Goh, E.J.: Secure Indexes. Cryptography ePrint Archive, Report 2003/216 (2003)Google Scholar
  9. 9.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: ACM CCS 2006, pp. 79–88. ACM (2006)Google Scholar
  10. 10.
    Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and searchable audit log. In: NDSS 2004, vol. 4, pp. 5–6 (2004)Google Scholar
  11. 11.
    Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–45. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24852-1_3 CrossRefGoogle Scholar
  12. 12.
    Byun, J.W., Lee, D.H., Lim, J.: Efficient conjunctive keyword search on encrypted data storage system. In: Atzeni, A.S., Lioy, A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 184–196. Springer, Heidelberg (2006). doi: 10.1007/11774716_15 CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70936-7_29 CrossRefGoogle Scholar
  14. 14.
    Li, M., Yu, S., Cao, N.: Authorized private keyword search over encrypted data in cloud computing. In: IEEE ISDCS 2011, pp. 383–392. IEEE (2011)Google Scholar
  15. 15.
    Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner, M.: Outsourced symmetric private information retrieval. In: ACM CCS 2013, pp. 875–888. ACM (2013)Google Scholar
  16. 16.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78967-3_9 CrossRefGoogle Scholar
  17. 17.
    Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-scalable searchable symmetric encryption with support for boolean queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353–373. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40041-4_20 CrossRefGoogle Scholar
  18. 18.
    Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over encrypted data in cloud computing. In: IEEE INFOCOM 2010, pp. 1–5. IEEE (2010)Google Scholar
  19. 19.
    Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud. In: IEEE INFOCOM 2014, pp. 2112–2120. IEEE (2014)Google Scholar
  20. 20.
    Shi, E., Bethencourt, J., Chan, T.H.: Multi-dimensional range query over encrypted data. In: IEEE SP 2007, pp. 350–364. IEEE (2007)Google Scholar
  21. 21.
    Wang, C., Cao, N., Li, J., Lou, W.J.: Secure ranked keyword search over encrypted cloud data. In: IEEE ICDCS 2010, pp. 253–262. IEEE (2010)Google Scholar
  22. 22.
    Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword search over outsourced cloud data. IEEE Trans. Parallel Distrib. Syst. 23(8), 1467–1479 (2012). IEEECrossRefGoogle Scholar
  23. 23.
    Cao, N., Wang, C., Li, M., Ren, K., Lou, W.J.: Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1), 222–233 (2014). IEEECrossRefGoogle Scholar
  24. 24.
    Lu, Y.: Privacy-preserving logarithmic-time search on encrypted data in cloud. In: NDSS (2012)Google Scholar
  25. 25.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01001-9_13 CrossRefGoogle Scholar
  26. 26.
    Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17373-8_33 CrossRefGoogle Scholar
  27. 27.
    Naveed, M., Prabhakaran, M., Gunter, C.: Dynamic searchable encryption via blind storage. In: IEEE SP 2014, pp. 639–654. IEEE (2014)Google Scholar
  28. 28.
    Bosch, C., Hartel, P., Jonker, W., et al.: A survey of provably secure searchable encryption. ACM Comput. Surv. 47(2) (2014). Article no. 18Google Scholar
  29. 29.
    Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates. In: ACM CCS 2014, pp. 310–320. ACM (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Peng Xu
    • 1
    Email author
  • Shuai Liang
    • 1
  • Wei Wang
    • 2
  • Willy Susilo
    • 3
  • Qianhong Wu
    • 4
  • Hai Jin
    • 1
  1. 1.Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Cyber-Physical-Social Systems Lab, School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  3. 3.School of Computing and Information Technology, Institute of Cybersecurity and CryptologyUniversity of WollongongWollongongAustralia
  4. 4.School of Electronic and Information EngineeringBeihang UniverisityBeijingChina

Personalised recommendations