Advertisement

An Observation Method for Behavioral Analysis of Collaborative Modeling Skills

  • Ilona WilmontEmail author
  • Stijn Hoppenbrouwers
  • Erik Barendsen
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 286)

Abstract

Process modeling skills are strongly subject to individual differences in cognitive abilities. However, we lack systematic methods to analyze how psychological mechanisms facilitating cognition influence modeling skills.

In this study, we develop a method for a more ecologically valid analysis of modeling behavior based on data from interviews, observations of modeling sessions and literature review. The data was analyzed in a bottom-up fashion and compared to existing models to construct a coding scheme, which was tested on four independent modeling sessions until theoretical saturation was achieved.

The resulting categories of Abstraction, Reasoning, Monitoring, Shifting, Working memory, Initiation and Planning were consistently applicable to real modeling sessions. Future research may analyze behavioral patterns within and across these categories to provide valuable insights in the psychological mechanisms of how practitioners use modeling skills and related cognitive processes.

Keywords

Process modeling Abstraction Executive control Reasoning 

References

  1. 1.
    Arthur, W.B.: Inductive reasoning and bounded rationality. Am. Econ. Rev. 84(2), 406–411 (1994)Google Scholar
  2. 2.
    Chin, C., Brown, D.E.: Learning deeply in science: an analysis and reintegration of deep approaches in two case studies of grade 8 students. Res. Sci. Educ. 30(2), 173–197 (2000)CrossRefGoogle Scholar
  3. 3.
    Christoff, K., Keramatian, K., Gordon, A., Smith, R., Mdler, B.: Prefrontal organization of cognitive control according to levels of abstraction. Brain Res. 1286, 94–105 (2009)CrossRefGoogle Scholar
  4. 4.
    Crone, E.A., Wendelken, C., Van Leijenhorst, L., Honomichl, R.D., Christoff, K., Bunge, S.A.: Neurocognitive development of relational reasoning. Dev. Sci. 12(1), 55–66 (2009)CrossRefGoogle Scholar
  5. 5.
    Dawson, P., Guare, R.: Executive Skills in Children and Adolescents: A Practical Guide to Assessment and Intervention. Guilford Press, New York (2010)Google Scholar
  6. 6.
    Gemino, A., Wand, Y.: Evaluating modeling techniques based on models of learning. Commun. ACM 46(10), 79–84 (2003)CrossRefGoogle Scholar
  7. 7.
    Gioia, G.A., Isquith, P.K., Retzlaff, P.D., Espy, K.A.: Confirmatory factor analysis of the Behavior Rating Inventory of Executive Function (BRIEF) in a clinical sample. Child Neuropsychol. 8(4), 249–257 (2002)CrossRefGoogle Scholar
  8. 8.
    Goldstein, K., Scheerer, M.: Abstract and concrete behavior: an experimental study with special tests. Psychol. Monogr. 53(2), 1–151 (1941)Google Scholar
  9. 9.
    Green, A.E., Fugelsang, J.A., Kraemer, D.J.M., Dunbar, K.N.: The micro-category account of analogy. Cognition 106(2), 1004–1016 (2008)CrossRefGoogle Scholar
  10. 10.
    Kane, M.J., Conway, A.R., Hambrick, D.Z., Engle, R.W.: Variation in working memory capacity as variation in executive attention and control. In: Conway, A.R.A., Jarrold, C., Kane, M.J., Miyake, A., Towse, J.N. (eds.) Variation in Working Memory, pp. 21–48. Oxford University Press, New York (2007)Google Scholar
  11. 11.
    King, A.: Discourse patterns for mediating peer learning. In: Cognitive Perspectives on Peer Learning, pp. 87–115. Routledge, London (1999)Google Scholar
  12. 12.
    Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42 (2007)CrossRefGoogle Scholar
  13. 13.
    Kyllonen, P.C., Christal, R.E.: Reasoning ability is (little more than) working-memory capacity. Intelligence 14(4), 389–433 (1990)CrossRefGoogle Scholar
  14. 14.
    Logan, G.D.: Executive control of thought and action. Acta Psychologica 60(2–3), 193–210 (1985)CrossRefGoogle Scholar
  15. 15.
    Manktelow, K., Fairley, N.: Superordinate principles in reasoning with causal and deontic conditionals. Think. Reason. 6(1), 41–65 (2000)CrossRefGoogle Scholar
  16. 16.
    Martini, M., Pinggera, J., Neurauter, M., Sachse, P., Furtner, M.R., Weber, B.: The impact of working memory and the process of process modelling on model quality: investigating experienced versus inexperienced modellers. Scientific Reports 6, 25561, May 2016Google Scholar
  17. 17.
    Meltzer, L. (ed.): Executive Function in Education. The Guilford Press, New York (2007)Google Scholar
  18. 18.
    Miyake, A., Friedman, N., Emerson, M., Witzki, A., Howerter, A., Wager, T.: The unity and diversity of executive functions and their contributions to complex frontal lobe tasks: a latent variable analysis. Cogn. Psychol. 41(1), 49–100 (2000)CrossRefGoogle Scholar
  19. 19.
    Piaget, J.: Zes Psychologische Studies. Van Loghum Slaterus (1969)Google Scholar
  20. 20.
    Pinggera, J., Zugal, S., Weidlich, M., Fahland, D., Weber, B., Mendling, J., Reijers, H.A.: Tracing the process of process modeling with modeling phase diagrams. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 370–382. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28108-2_36 CrossRefGoogle Scholar
  21. 21.
    Rasmussen, J.: The abstraction hierarchy. In: Information Processing and Human-Machine Interaction: An Approach to Cognitive Engineering, pp. 13–24. North-Holland (1986)Google Scholar
  22. 22.
    Ribes-Iñesta, E.: Behavior is abstraction, not ostension: conceptual and historical remarks on the nature of psychology. Behav. Philos. 32(1), 55–68 (2004)Google Scholar
  23. 23.
    Ross, D., Goodenough, J., Irvine, C.A.: Software engineering: process, principles, and goals. Computer 8(5), 17–27 (1975)CrossRefGoogle Scholar
  24. 24.
    Sedera, W., Rosemann, M., Gable, G.: Measuring process modelling success. In: Proceedings of ECIS 2002 (2002)Google Scholar
  25. 25.
    Sins, P.H.M., Savelsbergh, E.R., van Joolingen, W.R.: The difficult process of scientific modelling: an analysis of novices’ reasoning during computer based modelling. Int. J. Sci. Educ. 27(14), 1695–1721 (2005)CrossRefGoogle Scholar
  26. 26.
    Waltz, J.A., Knowlton, B.J., Holyoak, K.J., Boone, K.B., Back-Madruga, C., McPherson, S., Masterman, D., Chow, T., Cummings, J.L., Miller, B.L.: Relational integration and executive function in Alzheimer’s disease. Neuropsychology 18(2), 296 (2004)CrossRefGoogle Scholar
  27. 27.
    Wilmont, I., Hengeveld, S., Barendsen, E., Hoppenbrouwers, S.: Cognitive mechanisms of conceptual modelling. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 74–87. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41924-9_7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ilona Wilmont
    • 1
    • 2
    Email author
  • Stijn Hoppenbrouwers
    • 2
  • Erik Barendsen
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands
  2. 2.HAN University of Applied SciencesArnhemThe Netherlands

Personalised recommendations