An Analysis of Group Recommendation Heuristics for High- and Low-Involvement Items

  • Alexander Felfernig
  • Muesluem AtasEmail author
  • Thi Ngoc Trang Tran
  • Martin Stettinger
  • Seda Polat Erdeniz
  • Gerhard Leitner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10350)


Group recommender systems are based on aggregation heuristics that help to determine a recommendation for a group. These heuristics aggregate the preferences of individual users in order to reflect the preferences of the whole group. There exist a couple of different aggregation heuristics (e.g., most pleasure, least misery, and average voting) that are applied in group recommendation scenarios. However, to some extent it is still unclear which heuristics should be applied in which context. In this paper, we analyze the impact of the item domain (low involvement vs. high involvement) on the appropriateness of aggregation heuristics (we use restaurants as an example of low-involvement items and shared apartments as an example of high-involvement ones). The results of our study show that aggregation heuristics in group recommendation should be tailored to the underlying item domain.


Recommender systems Group decision making Group recommendation Decision heuristics 


  1. 1.
    Herlocker, J., Terveen, L., Konstan, J., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  2. 2.
    Jameson, A., Smyth, B.: Recommendation to groups. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 596–627. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72079-9_20 CrossRefGoogle Scholar
  3. 3.
    Jameson, A.: More than the sum of its members: challenges for group recommender systems. In: Working Conference on Advanced Visual Interfaces, AVI 2004, pp. 48–54. ACM (2004)Google Scholar
  4. 4.
    Jameson, A., Willemsen, M.C., Felfernig, A., Gemmis, M., Lops, P., Semeraro, G., Chen, L.: Human decision making and recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 611–648. Springer, Boston, MA (2015). doi: 10.1007/978-1-4899-7637-6_18 CrossRefGoogle Scholar
  5. 5.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. 6.
    Masthoff, J.: Group modeling: selecting a sequence of television items to suit a group of viewers. UMUAI 14(1), 37–85 (2004)Google Scholar
  7. 7.
    Masthoff, J.: The user as wizard: A method for early involvement in the design and evaluation of adaptive systems. In: 5th Workshop on User-Centered Design and Evaluation of Adaptive Systems (2006)Google Scholar
  8. 8.
    Masthoff, J.: Group recommender systems: combining individual models. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 677–702. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    McCarthy, K., Salamo, M., Coyle, L., McGinty, L., Smyth, B., Nixon, P.: Group recommender systems: a critiquing based approach. In: IUI 2006. ACM, pp. 267–269 (2006)Google Scholar
  10. 10.
    Ninaus, G., Felfernig, A., Stettinger, M., Reiterer, S., Leitner, G., Weninger, L., Schanil, W.: Intelligent techniques for software requirements engineering. In: In European Conference on AI, Prestigious Applications of Intelligent Systems (PAIS), pp. 1161–1166 (2014)Google Scholar
  11. 11.
    O’Connor, M., Cosley, D., Konstan, J., Riedl, J.: PolyLens: A recommmender system for groups of users. In: European Conference on Computer-Supported Cooperative Work, pp. 199–218. ACM (2001)Google Scholar
  12. 12.
    Payne, J., Bettman, J., Johnson, E.: The Adaptive Decision Maker. Campridge University Press, New York (1993)CrossRefGoogle Scholar
  13. 13.
    Petty, R., Cacioppo, J., Schumann, D.: Central and peripheral routes to advertising effectiveness: the moderating role of involvement. J. Consum. Res. 10, 135–146 (1983)CrossRefGoogle Scholar
  14. 14.
    Simon, H.: A behavioral model of rational choice. Q. J. Economics 69, 99–118 (1955)CrossRefGoogle Scholar
  15. 15.
    Stettinger, M., Felfernig, A., Leitner, G., Reiterer, S.: Counteracting anchoring effects in group decision making. In: Ricci, F., Bontcheva, K., Conlan, O., Lawless, S. (eds.) UMAP 2015. LNCS, vol. 9146, pp. 118–130. Springer, Cham (2015). doi: 10.1007/978-3-319-20267-9_10 CrossRefGoogle Scholar
  16. 16.
    Stettinger, M., Felfernig, A., Leitner, G., Reiterer, S., Jeran, M.: Counteracting serial position effects in the CHOICLA group decision support environment. In: 20th ACM Conference on Intelligent User Interfaces (IUI 2015), Atlanta, Georgia, USA, pp. 148–157. ACM (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexander Felfernig
    • 1
  • Muesluem Atas
    • 1
    Email author
  • Thi Ngoc Trang Tran
    • 1
  • Martin Stettinger
    • 1
  • Seda Polat Erdeniz
    • 1
  • Gerhard Leitner
    • 2
  1. 1.Institute of Software TechnologyGraz University of TechnologyGrazAustria
  2. 2.Institute for Informatics SystemsAlpen-Adria-Universität KlagenfurtKlagenfurtAustria

Personalised recommendations