Advertisement

Project Data Management Planning

  • William K. MichenerEmail author
Chapter

Abstract

A data management plan (DMP) describes how you will manage data during a research project and what you will do with the data after the project ends. Research sponsors may have very specific requirements for what should be included in a DMP. In lieu of or in addition to those requirements, good plans address 11 key issues: (1) research context (e.g., what questions or hypotheses will be examined); (2) how the data will be collected and acquired (e.g., human observation, in situ or remote sensing, surveys); (3) how the data will be organized (e.g., spreadsheets, databases); (4) quality assurance and quality control procedures; (5) how the data will be documented; (6) how the data will be stored, backed up and preserved for the long-term; (7) how the data will be integrated, analyzed, modeled and visualized; (8) policies that affect data use and redistribution; (9) how data will be communicated and disseminated; (10) roles and responsibilities of project personnel; and (11) adequacy of budget allocations to implement the DMP. Several tips are offered in preparing and using the DMP. In particular, researchers should start early in the project development process to create the DMP, seek input from others, engage all relevant project personnel, use common and widely available tools, and adopt community practices and standards. The best DMPs are those that are referred to frequently, reviewed and revised on a routine basis, and recycled for use in subsequent projects.

References

  1. Andelman SJ, Bowles CM, Willig MR et al (2004) Understanding environmental complexity through a distributed knowledge network. BioSci 54:243–249. doi10.1641/0006-3568(2004)054[0240:UECTAD]2.0.CO;2CrossRefGoogle Scholar
  2. Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41(Database issue):D36–D42. doi: 10.1093/nar/gks1195 CrossRefGoogle Scholar
  3. Consortium for Ocean Leadership (2010) Ocean observatories initiative: final network design. http://www.oceanobservatories.org/wp-content/uploads/2012/04/1101-00000_FND_OOI_ver_2-06_Pub.pdf. Accessed 14 Apr 2016
  4. Cook RB, Wei Y, Hook LA et al (2017) Preserve: protecting data for long-term use, Chapter 6. In: Recknagel F, Michener W (eds) Ecological informatics. Data management and knowledge discovery. Springer, HeidelbergGoogle Scholar
  5. Creative Commons Corporation (2016) Creative Commons. https://creativecommons.org. Accessed 14 Apr 2016
  6. Digital Curation Center (2016) About DMPonline. https://dmponline.dcc.ac.uk/about_us. Accessed 14 Apr 2016
  7. DMPTool (2016) Data management planning tool. https://dmptool.org. Accessed 14 Apr 2016
  8. Dryad Digital Repository (2016) Dryad. http://datadryad.org. Accessed 14 Apr 2016
  9. Dublin Core ® Metadata Initiative (2016) DCMI home: dublin core metadata initiative (DCMI). http://dublincore.org. Accessed 14 Apr 2016
  10. Fegraus EH, Andelman S, Jones MB et al (2005) Maximizing the value of ecological data with structured metadata: an introduction to Ecological Metadata Language (EML) and principles for metadata creation. Bull Ecol Soc Am 86:158–168CrossRefGoogle Scholar
  11. Flemons P, Guralnick R, Krieger J et al (2007) A web-based GIS tool for exploring the world’s biodiversity: The Global Biodiversity Information Facility Mapping and Analysis Portal Application (GBIF-MAPA). Ecol Inf 2(1):49–60CrossRefGoogle Scholar
  12. Global Biodiversity Information Facility (GBIF) (2016) Global Biodiversity Information Facility: free and open access to biodiversity data. http://www.gbif.org. Accessed 14 Apr 2016
  13. Goble CA, Bhagat J, Aleksejevs S et al (2010) myExperiment: a repository and social network for the sharing of bioinformatics workflows. Nucleic Acids Res 38(suppl 2):W677–W682. doi: 10.1093/nar/gkq429 CrossRefGoogle Scholar
  14. Hampton SE, Anderson SS, Bagby SC et al (2015) The Tao of open science for ecology. Ecosphere 6:art120. http://dx.doi.org/10.1890/ES14-00402.1
  15. Higgins D, Berkley C, Jones M (2002) Managing heterogeneous ecological data using Morpho. In: Proceedings of the 14th international conference on scientific and statistical database management, pp 69–76Google Scholar
  16. Michener WK (2017a) Quality assurance and quality control (QA/QC), Chapter 4. In: Recknagel F, Michener W (eds) Ecological informatics. Data management and knowledge discovery. Springer, HeidelbergGoogle Scholar
  17. Michener WK (2017b) Creating and managing metadata, Chapter 5. In: Recknagel F, Michener W (eds) Ecological informatics. Data management and knowledge discovery. Springer, HeidelbergGoogle Scholar
  18. Michener WK, Waide RB (2009) The evolution of collaboration in ecology: lessons from the United States Long Term Ecological Research Program. In: Olson GM, Zimmerman A, Bos N (eds) Scientific collaboration on the Internet. MIT Press, Boston, pp 297–310Google Scholar
  19. Michener WK, Porter J, Servilla M et al (2011) Long term ecological research and information management. Ecol Inf 6:13–24CrossRefGoogle Scholar
  20. National Center for Biotechnology Information (NCBI) (2016) GenBank overview. http://www.ncbi.nlm.nih.gov/genbank/. Accessed 14 Apr 2016
  21. National Centers for Environmental Information (NCEI) (2016) NOAA National Centers for Environmental Information. https://www.nodc.noaa.gov. Accessed 14 Apr 2016
  22. Pampel H, Vierkant P, Scholze F et al (2013) Making research data repositories visible: the re3data.org registry. PLoS One 8:e78080. doi: 10.1371/journal.pone.0078080 CrossRefGoogle Scholar
  23. Peters DPC, Loescher HW, SanClements MD et al (2014) Taking the pulse of a continent: expanding site-based research infrastructure for regional- to continental-scale ecology. Ecosphere 5:29. http://dx.doi.org/10.1890/ES13-00295.1 CrossRefGoogle Scholar
  24. Porter JH (2017) Scientific databases for environmental research, Chapter 3. In: Recknagel F, Michener W (eds) Ecological informatics. Data management and knowledge discovery. Springer, HeidelbergGoogle Scholar
  25. Porter JH, Nagy E, Kratz TK et al (2009) New eyes on the world: advanced sensors for ecology. BioSci 59:385–397CrossRefGoogle Scholar
  26. Porter JH, Hanson PC, Lin C-C (2012) Staying afloat in the sensor data deluge. Trends Ecol Evol 27:121–129CrossRefGoogle Scholar
  27. Sansone S-A, Rocca-Serra P, Field D et al (2012) Toward interoperable bioscience data. Nat Genet 44:121–126. doi: 10.1038/ng.1054 CrossRefGoogle Scholar
  28. Schimel D, Keller M, Berukoff S et al (2011) NEON science strategy: enabling continental-scale ecological forecasting. NEON, Inc., Boulder, COGoogle Scholar
  29. Vision TJ (2010) Open data and the social contract of scientific publishing. BioSci 60:330–330. doi: 10.1525/bio.2010.60.5.2 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of New MexicoAlbuquerqueUSA

Personalised recommendations