Potential Theoretic Approach to Design of Accurate Numerical Integration Formulas in Weighted Hardy Spaces

  • Ken’ichiro Tanaka
  • Tomoaki Okayama
  • Masaaki Sugihara
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 201)


We propose a method for designing accurate numerical integration formulas on weighted Hardy spaces, which are regarded as spaces of transformed integrands by some useful variable transformations such as the double-exponential transformation. We begin with formulating an optimality of numerical integration formulas in the space by using the norms of the error operators corresponding to those formulas. Then, we derive an expression of the minimum value of the norms, which gives a criterion for an optimal sequence of sampling points for numerical integration. Based on the expression, we propose an algorithm designing accurate numerical integration formulas on the space by a potential theoretic approach. The effectiveness of the designed formulas is supported by some numerical examples.


Weighted Hardy space Numerical integration Potential theory Green potential 


  1. 1.
    J.-E. Andersson, Optimal quadrature of \(H^{p}\) functions. Math. Z. 172, 55–62 (1980)Google Scholar
  2. 2.
    J.-E. Andersson, B.D. Bojanov, A note on the optimal quadrature in \(H^{p}\). Numer. Math. 44, 301–308 (1984)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    S. Haber, The tanh rule for numerical integration. SIAM J. Numer. Anal. 14, 668–685 (1977)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M. Mori, Discovery of the double exponential transformation and its developments. Publ. RIMS Kyoto Univ. 41, 897–935 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    E.B. Saff, V. Totik, Logarithmic Potentials with External Fields (Springer, Berlin, 1997)CrossRefMATHGoogle Scholar
  6. 6.
    C. Schwartz, Numerical integration of analytic functions. J. Comput. Phys. 4, 19–29 (1969)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    M. Sugihara, Optimality of the double exponential formula – functional analysis approach. Numer. Math. 75, 379–395 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    M. Sugihara, Near optimality of the sinc approximation. Math. Comput. 72, 767–786 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    F. Stenger, Numerical Methods Based on Sinc and Analytic Functions (Springer, New York, 1993)CrossRefMATHGoogle Scholar
  10. 10.
    F. Stenger, Handbook of Sinc Numerical Methods (CRC Press, Boca Raton, 2011)MATHGoogle Scholar
  11. 11.
    H. Takahasi, M. Mori, Quadrature formulas obtained by variable transformation. Numer. Math. 21, 206–219 (1973)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    H. Takahasi, M. Mori, Double exponential formulas for numerical integration. Publ. RIMS Kyoto Univ. 9, 721–741 (1974)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    K. Tanaka, M. Sugihara, K. Murota, M. Mori, Function classes for double exponential integration formulas. Numer. Math. 111, 631–655 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    K. Tanaka, T. Okayama, M. Sugihara, Potential theoretic approach to design of accurate formulas for function approximation in symmetric weighted Hardy spaces. IMA J. Numer. Anal. (2016). doi:10.1093/imanum/drw022
  15. 15.
    L.N. Trefethen, J.A.C. Weideman, The exponentially convergent trapezoidal rule. SIAM Rev. 56, 385–458 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ken’ichiro Tanaka
    • 1
  • Tomoaki Okayama
    • 2
  • Masaaki Sugihara
    • 3
  1. 1.Department of Mathematical Informatics, Graduate School of Information Science and TechnologyThe University of TokyoBunkyo-ku, TokyoJapan
  2. 2.Department of Systems Engineering, Graduate School of Information SciencesHiroshima City UniversityAsaminami-ku, HiroshimaJapan
  3. 3.Department of Physics and Mathematics, College of Science and EngineeringAoyama Gakuin UniversityChuo-ku, Sagamihara-shi, KanagawaJapan

Personalised recommendations