Advertisement

Non-dictionary Aided Sparse Unmixing of Hyperspectral Images via Weighted Nonnegative Matrix Factorization

  • Yaser Esmaeili SalehaniEmail author
  • Mohamed Cheriet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10317)

Abstract

In this paper, we propose a method of blind (non-dictionary aided) sparse hyperspectral unmixing for the linear mixing model (LMM). In this method, both the spectral signatures of materials (endmembers) (SSoM) and their fractional abundances (FAs) are supposed to be unknown and the goal is to find the matrices represent SSoM and FAs. The proposed method employs a weighted version of the non-negative matrix factorization (WNMF) in order to mitigate the impact of pixels that suffer from a certain level of noise (i.e., low signal-to-noise-ratio (SNR) values). We formulate the WNMF problem thorough the regularized sparsity terms of FAs and use the multiplicative updating rules to solve the acquired optimization problem. The effectiveness of proposed method is shown through the simulations over real hyperspectral data set and compared with several competitive unmixing methods.

Keywords

Hyperspectral images Unmixing Weighted nonnegative matrix factorization (WNMF) Sparse recovery Non-dictionary aided 

References

  1. 1.
  2. 2.
    Bioucas-Dias, J., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 1(2), 6–36 (2013)CrossRefGoogle Scholar
  3. 3.
    Bioucas-Dias, J., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., Chanussot, J.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(2), 354–379 (2012)CrossRefGoogle Scholar
  4. 4.
    Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations Applications to Exploratory Multiway Data Analysis and Blind Source Separation. The Atrium, Southern Gate, Chichester (2009)Google Scholar
  5. 5.
    Esmaeili Salehani, Y., Gazor, S.: Smooth and sparse regularization for NMF hyperspectral unmixing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. (2017, accepted for the publication)Google Scholar
  6. 6.
    Esmaeili Salehani, Y.: Linear hyperspectral unmixing using l0-norm approximations and nonnegative matrix factorization, Ph.D. thesis, October 2016Google Scholar
  7. 7.
    Esmaeili Salehani, Y., Gazor, S.: Collaborative unmixing hyperspectral imagery via nonnegative matrix factorization. In: Mansouri, A., Nouboud, F., Chalifour, A., Mammass, D., Meunier, J., ElMoataz, A. (eds.) ICISP 2016. LNCS, vol. 9680, pp. 118–126. Springer, Cham (2016). doi: 10.1007/978-3-319-33618-3_13 Google Scholar
  8. 8.
    Esmaeili Salehani, Y., Gazor, S.: Sparse data reconstruction via adaptive \(\ell _p\)-norm and multilayer NMF. In: 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 1–6. IEEE, October 2016Google Scholar
  9. 9.
    Esmaeili Salehani, Y., Gazor, S., Kim, I.M., Yousefi, S.: \(\ell _0\)-norm sparse hyperspectral unmixing using arctan smoothing. Remote Sens. 8(3), 187 (2016)CrossRefGoogle Scholar
  10. 10.
    Gu, Q., Zhou, J., Ding, C.: Collaborative filtering: weighted nonnegative matrix factorization incorporating user and item graphs. In: Proceedings of the 2010 SIAM International Conference on Data Mining, pp. 199–210. SIAM (2010)Google Scholar
  11. 11.
    Heinz, D.C., Chang, C.I.: Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 529–545 (2001)CrossRefGoogle Scholar
  12. 12.
    Ho, N., Van Dooren, P., Blondel, V.: Weighted nonnegative matrix factorization and face feature extraction. Submitted to Image and Vision Computing (2007)Google Scholar
  13. 13.
    Hoyer, P.O.: Non-negative sparse coding. In: Proceedings of IEEE Workshop Neural Network Signal Process. XII, Martigny, Switzerland, pp. 557–565 (2002)Google Scholar
  14. 14.
    Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Iordache, M.D., Bioucas-Dias, J., Plaza, A.: Sparse unmixing of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49(6), 2014–2039 (2011)CrossRefGoogle Scholar
  16. 16.
    Kim, Y.D., Choi, S.: Weighted nonnegative matrix factorization. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, pp. 1541–1544. IEEE (2009)Google Scholar
  17. 17.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)Google Scholar
  18. 18.
    Lee, D.D., Seung, H.: Learning the parts of objects with nonnegative matrix factorization. Nature 401(6755), 788–791 (1999)CrossRefGoogle Scholar
  19. 19.
    Lu, X., Wu, H., Yuan, Y., Yan, P., Li, X.: Manifold regularized sparse NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 51(5), 2815–2826 (2013)CrossRefGoogle Scholar
  20. 20.
    Ma, W.K., Bioucas-Dias, J., Chan, T.H., Gillis, N., Gader, P., Plaza, A., Ambikapathi, A., Chi, C.Y.: A signal processing perspective on hyperspectral unmixing: insights from remote sensing. IEEE Sig. Process. Mag. 31(1), 67–81 (2014)CrossRefGoogle Scholar
  21. 21.
    Nascimento, J., Bioucas-Dias, J.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosc. Remote Sens. 43(8), 898–910 (2005)CrossRefGoogle Scholar
  22. 22.
    Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)CrossRefGoogle Scholar
  23. 23.
    Qian, Y., Jia, S., Zhou, J., Robles-Kelly, A.: Hyperspectral unmixing via \(l_{\frac{1}{2}}\) sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 49(11), 4282–4297 (2011)CrossRefGoogle Scholar
  24. 24.
    Rajabi, R., Ghassemian, H.: Spectral unmixing of hyperspectral imagery using multilayer NMF. IEEE Geosc. Remote Sens. Lett. 12(1), 38–42 (2015)CrossRefGoogle Scholar
  25. 25.
    Vavasis, S.A.: On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20(3), 1364–1377 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yuan, Y., Fu, M., Lu, X.: Substance dependence constrained sparse NMF for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 53(6), 2975–2986 (2015)CrossRefGoogle Scholar
  27. 27.
    Zhu, F., Wang, Y., Fan, B., Meng, G., Xiang, S., Pan, C.: Spectral unmixing via data-guided sparsity. IEEE Trans. Image Process. 23(12), 5412–5427 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Synchromedia LaboratoryUniversity of Quebec’s École de technologie supérieure (ÉTS)MontrealCanada

Personalised recommendations