Contrast Enhancement by Top-Hat and Bottom-Hat Transform with Optimal Structuring Element: Application to Retinal Vessel Segmentation

  • Rafsanjany KusholEmail author
  • Md. Hasanul Kabir
  • Md Sirajus Salekin
  • A. B. M. Ashikur Rahman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10317)


Automatic detection of the retinal blood vessel can be used in biometric identification, computer assisted laser surgery, and diagnosis of many eye related diseases. Early detection of retinal blood vessel helps people to take proper treatment against diseases such as diabetic retinopathy, hypertension which can significantly reduce possible vision loss. This paper presents an efficient and simple contrast enhancement technique where morphological operations like top-hat and bottom-hat are applied to enhance the image. Edge Content-based contrast matrix is measured for selecting the optimal structuring element size and simple straightforward steps are applied for completely extracting the vessels from the enhanced retinal image. The proposed method acquires an average accuracy rate of 0.9379 and 0.9504 on two publicly available DRIVE and STARE benchmark dataset respectively.


Retina Top-hat Bottom-hat Vessel segmentation 


  1. 1.
    Joussen, A.M., Gardner, T.W., Kirchhof, B., Ryan, S.J.: Retinal Vascular Disease. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images a survey. Comput. Methods Prog. Biomed. 108(1), 407–433 (2012)CrossRefGoogle Scholar
  3. 3.
    Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8(3), 263–269 (1989)CrossRefGoogle Scholar
  4. 4.
    Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)CrossRefGoogle Scholar
  5. 5.
    Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput. Biol. Med. 40(4), 438–445 (2010)CrossRefGoogle Scholar
  6. 6.
    Chakraborti, T., Jha, D.K., Chowdhury, A.S., Jiang, X.: A selfadaptive matched filter for retinal blood vessel detection. Mach. Vis. Appl. 26(1), 55–68 (2015)CrossRefGoogle Scholar
  7. 7.
    Vlachos, M., Dermatas, E.: Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34(3), 213–227 (2010)CrossRefGoogle Scholar
  8. 8.
    Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)CrossRefGoogle Scholar
  9. 9.
    Miri, M.S., Mahloojifar, A.: Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Trans. Biomed. Eng. 58(5), 1183–1192 (2011)CrossRefGoogle Scholar
  10. 10.
    Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)CrossRefGoogle Scholar
  11. 11.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)CrossRefGoogle Scholar
  12. 12.
    Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)CrossRefGoogle Scholar
  13. 13.
    Lidong, H., Wei, Z., Jun, W., Zebin, S.: Combination of contrast limited adaptive histogram equalisation and discrete wavelet transform for image enhancement. IET Image Process. 9(10), 908–915 (2015)CrossRefGoogle Scholar
  14. 14.
    Hassanpour, H., Samadiani, N., Salehi, S.M.: Using morphological transforms to enhance the contrast of medical images. Egypt. J. Radiol. Nucl. Med. 46(2), 481–489 (2015)CrossRefGoogle Scholar
  15. 15.
    Gupta, S., Porwal, R.: Appropriate contrast enhancement measures for brain and breast cancer images. Int. J. Biomed. Imaging 2016, 8 p. (2016). Article ID 4710842. doi: 10.1155/2016/4710842
  16. 16.
    Saleem, A., Beghdadi, A., Boashash, B.: Image fusion-based contrast enhancement. EURASIP J. Image Video Process. 2012(1), 1 (2012)CrossRefGoogle Scholar
  17. 17.
    Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Rusboost: a hybrid approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern.-Part: A Syst. Hum. 40(1), 185–197 (2010)CrossRefGoogle Scholar
  18. 18.
    Niemeijer, M., Staal, J., Ginneken, B.V., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: International Society for Optics and Photonics, Medical Imaging 2004, pp. 648–656 (2004)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rafsanjany Kushol
    • 1
    Email author
  • Md. Hasanul Kabir
    • 1
  • Md Sirajus Salekin
    • 1
  • A. B. M. Ashikur Rahman
    • 1
  1. 1.Department of Computer Science and EngineeringIslamic University of TechnologyDhakaBangladesh

Personalised recommendations