Sperm Flagellum Center-Line Tracing in Fluorescence 3D+t Low SNR Stacks Using an Iterative Minimal Path Method

  • Paul Hernandez-Herrera
  • Fernando Montoya
  • Juan M. Rendón
  • Alberto Darszon
  • Gabriel Corkidi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10317)

Abstract

Intracellular calcium ([Ca\(^{2+}\)]i) regulates sperm motility. Visualizing [Ca\(^{2+}\)]i in 3D is not a simple matter since it requires complex fluorescence microscopy techniques where the resulting images have very low intensity and consequently low SNR (Signal to Noise Ratio). In 3D+t sequences, this problem is magnified since the flagellum beats (for human sperm) at an average frequency of 15 Hz, making it harder to obtain the three dimensional information. Moreover, 3D holographic techniques do not work for these fluorescence based images. In this paper, an algorithm to extract the flagellum’s center-line in 3D+t stacks is presented. For this purpose, an iterative algorithm based on the fast-marching method is proposed to extract the flagellum’s center-line. Quantitative and qualitative results are presented in a 3D+t stack to demonstrate the ability of the proposed algorithm to trace the flagellum’s center-line. Our method was qualitative and quantitatively compared against state-of-the-art tubular structure center-line extraction algorithms outperforming them and reaching a Precision and Recall of 0.96 as compared with a semi-manual method used as reference. The proposed methodology has proven to solve a major problem related with the analysis of the 3D motility of sperm cells in images with very low intensity.

Notes

Acknowledgments

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) (grants 253952 to G. Corkidi and Fronteras 71 to 39908-Q to A. Darszon) and Posdoctoral scholarship 291142 (Paul Hernandez Herrera); the Dirección General de Asuntos del Personal Académico by the Universidad Nacional Autónoma de México (DGAPA-UNAM) grants CJIC/CTIC/4898/2016 to F. Montoya and IN205516 to A. Darszon.

References

  1. 1.
    Acciai, L., Soda, P., Iannello, G.: Automated neuron tracing methods: an updated account. Neuroinformatics 14(4), 353–367 (2016)CrossRefGoogle Scholar
  2. 2.
    Corkidi, G., Taboada, B., Wood, C., Guerrero, A., Darszon, A.: Tracking sperm in three-dimensions. Biochem. Biophys. Res. Commun. 373(1), 125–129 (2008)CrossRefGoogle Scholar
  3. 3.
    Darszon, A., Nishigaki, T., Beltran, C., Treviño, C.L.: Calcium channels in the development, maturation, and function of spermatozoa. Physiol. Rev. 91(4), 1305–1355 (2011)CrossRefGoogle Scholar
  4. 4.
    Hernandez-Herrera, P., Papadakis, M., Kakadiaris, I.A.: Multi-scale segmentation of neurons based on one-class classification. J. Neurosci. Methods 266, 94–106 (2016)CrossRefGoogle Scholar
  5. 5.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)CrossRefGoogle Scholar
  6. 6.
    Liu, S., Zhang, D., Liu, S., Feng, D., Peng, H., Cai, W.: Rivulet: 3D neuron morphology tracing with iterative back-tracking. Neuroinformatics 14(1), 387–401 (2016)CrossRefGoogle Scholar
  7. 7.
    Longair, M.H., Baker, D.A., Armstrong, J.D.: Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27(17), 2453–2454 (2011)CrossRefGoogle Scholar
  8. 8.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  9. 9.
    Silva-Villalobos, F., Pimentel, J., Darszon, A., Corkidi, G.: Imaging of the 3D dynamics of flagellar beating in human sperm. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 190–193 (2014)Google Scholar
  10. 10.
    Smistad, E., Falch, T.L., Bozorgi, M., Elster, A.C., Lindseth, F.: Medical image segmentation on GPUs-a comprehensive review. Med. Image Anal. 20(1), 1–18 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paul Hernandez-Herrera
    • 1
    • 2
  • Fernando Montoya
    • 1
  • Juan M. Rendón
    • 2
  • Alberto Darszon
    • 1
  • Gabriel Corkidi
    • 1
  1. 1.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.Centro de Investigación en Ciencias, IICBA, UAEMCuernavacaMexico

Personalised recommendations