Advertisement

On the Exact Solution of the Distance Geometry with Interval Distances in Dimension 1

  • Antonio Mucherino
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 717)

Abstract

Distance Geometry consists in embedding a simple weighted undirected graph in a given space so that the distances between embedded vertices correspond to the edge weights. Weights can be either exact real values, or real-valued intervals. In this work, the focus is on problems where the embedding space is the Euclidean 1-dimensional space, and the general situation where distances can be represented by intervals is taken into consideration. A previously proposed branch-and-prune algorithm is adapted to the 1-dimensional case, and the proposed variant turns out to be deterministic even in presence of interval distances. Backtracking pruning is introduced in the algorithm for guaranteeing that all vertex positions in a given solution are actually feasible. The proposed algorithm is tested on a set of artificially generated instances in dimension 1.

Notes

Acknowledgements

The author is thankful to the anonymous referees.

References

  1. 1.
    Alipanahi, B., Krislock, N., Ghodsi, A., Wolkowicz, H., Donaldson, L., Li, M.: Determining protein structures from NOESY distance constraints by semidefinite programming. J. Comput. Biol. 20(4), 296–310 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alves, R., Cassioli, A., Mucherino, A., Lavor, C., Liberti, L.: The integration of clifford algebra in the \(i\) BP algorithm for the DMDGP. In: Proceedings of the International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO13), pp. 745–746. Granada, Spain (2013)Google Scholar
  3. 3.
    Alves, R., Cassioli, A., Mucherino, A., Lavor, C., Liberti, L.: Adaptive branching in iBP with clifford algebra. In: Proceedings of Distance Geometry and Applications (DGA13), pp. 65-69. Manaus, Amazonas, Brazil (2013)Google Scholar
  4. 4.
    Billinge, S.J.L., Duxbury, Ph.M., Gonçalves, D.S., Lavor, C., Mucherino, A.: Assigned and unassigned distance geometry: applications to biological molecules and nanostructures. Q. J. Oper. Res. 14(4), 337–376 (2016)Google Scholar
  5. 5.
    Biswas, P., Lian, T., Wang, T., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. 2, 188–220 (2006)CrossRefGoogle Scholar
  6. 6.
    Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)zbMATHGoogle Scholar
  7. 7.
    Ding, Y., Krislock, N., Qian, J., Wolkowicz, H.: Sensor network localization, Euclidean distance matrix completions, and graph realization. Optim. Eng. 11(1), 45–66 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Freris, N.M., Graham, S.R., Kumar, P.R.: Fundamental limits on synchronizing clocks over networks. IEEE Trans. Autom. Control 56(6), 1352–1364 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gonçalves, D.S., Mucherino, A., Lavor, C.: An adaptive branching scheme for the branch & prune algorithm applied to distance geometry. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS14), Workshop on Computational Optimization (WCO14), pp. 463–469. Warsaw, Poland (2014)Google Scholar
  10. 10.
    Gonçalves, D.S., Mucherino, A., Lavor, C., Liberti, L.: Recent advances on the interval distance geometry problem. J. Glob. Optim. (2017). To appearGoogle Scholar
  11. 11.
    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lavor, C., Liberti, L., Mucherino, A.: The interval branch-and-prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Glob. Optim. 56(3), 855–871 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lavor, C., Alves, R., Figueiredo, W., Petraglia, A., Maculan, N.: Clifford algebra and the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebr. 25(4), 925–942 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mucherino, A., Lavor, C.: The branch and prune algorithm for the molecular distance geometry problem with inexact distances. In: Proceedings of World Academy of Science, Engineering and Technology 58, International Conference on Bioinformatics and Biomedicine (ICBB09), pp. 349–353. Venice, Italy (2009)Google Scholar
  17. 17.
    Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6(8), 1671–1686 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods and Applications, 410 pp. Springer, New York (2013)Google Scholar
  19. 19.
    Mucherino, A., de Freitas, R., Lavor, C.: Distance geometry and applications. Discret. Appl. Math. 197, 1–144 (2015). Special issueMathSciNetCrossRefGoogle Scholar
  20. 20.
    Petitjean, M.: Spheres unions and intersections and some of their applications in molecular modeling. In: [19], pp. 61–83 (2013)Google Scholar
  21. 21.
    Saxe, J.: Embeddability of weighted graphs in \(k\)-space is strongly NP-hard. In: Proceedings of \(17^{th}\) Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)Google Scholar
  22. 22.
    Wang, Z., Zheng, S., Ye, Y., Boyd, S.: Further relaxations of the semidefinite programming approach to sensor network localization. SIAM J. Optim. 19(2), 655–673 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wu, Y.-C., Chaudhari, Q., Serpedin, E.: Clock synchronization of wireless sensor networks. IEEE Signal Process. Mag. 28(1), 124–138 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.IRISAUniversity of Rennes 1RennesFrance

Personalised recommendations