Advertisement

Distributed Computing Technologies in Big Data Analytics

  • Kaushik DuttaEmail author
Chapter
Part of the Scalable Computing and Communications book series (SCC)

Abstract

One of the fundamental technology used in Big Data Analytics is the distributed computing. The traditional distributed computing technology has been adapted to create a new class of distributed computing platform and software components that make the big data analytics easier to implement. In this chapter, we discuss few of these technologies. First, we discuss the distributed database technology and how this technology has been adapted to develop no-SQL database technologies. Following this, we discuss the distributed file system (HDFS) and distributed computing technology such as map-reduce and spark. We discuss how the distributed storage and distributed computing has impacted the machine learning platforms for big data. Next, we discuss the distributed search platform and how such search platform can be used for data analytics on textual documents. We also describe the distributed communication platform such as message queue and message processing software. The data visualization technology is also changing with the big data. So lastly we introduce readers to few newer data visualization platforms targeted for big data.

References

  1. 1.
    Adamic, L. A., & Huberman, B. A. (2000). Power-Law Distribution of the World Wide Web. Science, 287(5461).Google Scholar
  2. 2.
    Aerospike. (2017). Aerospike | High Performance NoSQL Database. Retrieved March 23, 2017, from http://www.aerospike.com/
  3. 3.
    Amazon. (2017). AWS | Amazon SimpleDB – Simple Database Service. Retrieved March 23, 2017, from https://aws.amazon.com/simpledb/
  4. 4.
    Apache. (2015). Solr. Retrieved from http://lucene.apache.org/solr/
  5. 5.
    Apache. (2017a). Apache CouchDB. Retrieved March 23, 2017, from http://couchdb.apache.org/
  6. 6.
    Apache. (2017b). Apache Mahout: Scalable machine learning and data mining. Retrieved March 23, 2017, from http://mahout.apache.org/
  7. 7.
    Apache Flink. (2017). Apache Flink: Introduction to Apache Flink®. Retrieved March 23, 2017, from https://flink.apache.org/introduction.html
  8. 8.
    Apache Kafka. (2017). Apache Kafka. Retrieved March 23, 2017, from https://kafka.apache.org/intro
  9. 9.
    Apache Lucene. (2017). Apache Lucene – Welcome to Apache Lucene. Retrieved March 23, 2017, from https://lucene.apache.org/
  10. 10.
    Apache Zeppelin. (2017). Zeppelin. Retrieved March 23, 2017, from https://zeppelin.apache.org/
  11. 11.
    Basho. (2017). Riak – Distributed Databases. Retrieved March 23, 2017, from http://basho.com/products/
  12. 12.
    Brewer, E., & Eric. (2010). A certain freedom. In Proceeding of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing – PODC ’10 (pp. 335–335). New York, New York, USA: ACM Press. http://doi.org/10.1145/1835698.1835701
  13. 13.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., … Gruber, R. E. (2006). Bigtable: A distributed storage system for structured data. In 7th Symposium on Operating Systems Design and Implementation (OSDI ’06), November 6–8, Seattle, WA, USA (pp. 205–218). USENIX Association. Retrieved from http://research.google.com/archive/bigtable-osdi06.pdf
  14. 14.
    Cloudera. (2017). How-to: Build a Machine-Learning App Using Sparkling Water and Apache Spark – Cloudera Engineering Blog. Retrieved March 23, 2017, from http://blog.cloudera.com/blog/2015/10/how-to-build-a-machine-learning-app-using-sparkling-water-and-apache-spark/
  15. 15.
    Datastax. (2017). Introduction to Cassandra Query Language. Retrieved March 23, 2017, from https://docs.datastax.com/en/cql/3.1/cql/cql_intro_c.html
  16. 16.
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., … Vogels, W. (2007). Dynamo. In Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles – SOSP ’07 (p. 205). New York, New York, USA: ACM Press. http://doi.org/10.1145/1294261.1294281
  17. 17.
    Elastic. (2017). Open Source Search Analytics · Elasticsearch. Retrieved March 23, 2017, from https://www.elastic.co/
  18. 18.
    Erb, B. (2016). The Challenge of Distributed Database Systems. Retrieved March 23, 2017, from http://berb.github.io/diploma-thesis/community/061_challenge.html
  19. 19.
    Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google file system. ACM SIGOPS Operating Systems Review.Google Scholar
  20. 20.
    Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News, 33(2), 51. http://doi.org/10.1145/564585.564601
  21. 21.
    Gino, I. (2017). Caching a MongoDB Database with Redis — SitePoint. Retrieved March 23, 2017, from https://www.sitepoint.com/caching-a-mongodb-database-with-redis/
  22. 22.
    H2O. (2017). H2O.ai. Retrieved March 23, 2017, from https://www.h2o.ai/h2o/
  23. 23.
    Hortonworks. (2017a). Apache Hadoop HDFS – Hortonworks. Retrieved March 23, 2017, from https://hortonworks.com/apache/hdfs/#section_2
  24. 24.
    Hortonworks. (2017b). Introduction to Kafka – Hortonworks Data Platform. Retrieved March 23, 2017, from https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_kafka-user-guide/content/ch_using_kafka.html
  25. 25.
    Hotcodeshare. (2017). How Elasticsearch index document? | Hot code share. Retrieved March 23, 2017, from http://www.hotcodeshare.com/content/how-elasticsearch-index-document
  26. 26.
    IBM. (2017). IBM Data Science Experience. Retrieved March 23, 2017, from https://www.ibm.com/us-en/marketplace/data-science-experience/resources
  27. 27.
    Jupyter. (2017). Project Jupyter. Retrieved March 23, 2017, from http://jupyter.org/
  28. 28.
    kickstarthadoop. (2017). Kick Start Hadoop: Word Count – Hadoop Map Reduce Example. Retrieved March 23, 2017, from http://kickstarthadoop.blogspot.com/2011/04/word-count-hadoop-map-reduce-example.html
  29. 29.
    Leavitt, N. (2010). Will NoSQL Databases Live Up to Their Promise? Computer, 43(2), 12–14. http://doi.org/10.1109/MC.2010.58
  30. 30.
    Liip. (2017). On ElasticSearch performance – Liip Blog. Retrieved March 23, 2017, from https://blog.liip.ch/archive/2013/07/19/on-elasticsearch-performance.html
  31. 31.
    Memcached. (2017). memcached – a distributed memory object caching system. Retrieved March 23, 2017, from https://memcached.org/
  32. 32.
    MongoDB Inc. (2015). mongoDB. Retrieved from https://www.mongodb.org/
  33. 33.
    Oracle. (2017). Berkeley DB Products. Retrieved March 23, 2017, from https://www.oracle.com/database/berkeley-db/index.html
  34. 34.
    Ozsu, M. T., & Valduriez, P. (2011). Principles of Distributed Database Systems – M. Tamer Özsu, Patrick Valduriez – Google Books. Retrieved from https://books.google.com/books?hl=en&lr=&id=TOBaLQMuNV4C&oi=fnd&pg=PR3&dq=Distributed+Database&ots=LqFjgM_P-7&sig=mcmEnxerBLtixHY-0CrzS2hFojc#v=onepage&q=Distributed Database&f=false
  35. 35.
    Pritchett, D., & Dan. (2008). BASE: AN ACID ALTERNATIVE. Queue, 6(3), 48–55. http://doi.org/10.1145/1394127.1394128
  36. 36.
    RabbitMQ. (2017). RabbitMQ – Messaging that just works. Retrieved March 23, 2017, from https://www.rabbitmq.com/
  37. 37.
    Redis. (2017). Redis. Retrieved March 23, 2017, from https://redis.io/
  38. 38.
    Saphanatutorial. (2017). How YARN Overcomes MapReduce Limitations in Hadoop 2.0. Retrieved March 23, 2017, from http://saphanatutorial.com/how-yarn-overcomes-mapreduce-limitations-in-hadoop-2-0/
  39. 39.
    Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop Distributed File System. In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST) (pp. 1–10). IEEE. http://doi.org/10.1109/MSST.2010.5496972
  40. 40.
    Sparkflows. (2017). SparkFlows.io | Big Data Application Development Made Easy. Retrieved March 23, 2017, from https://www.sparkflows.io/overview
  41. 41.
    Tableau. (2017). Business Intelligence and Analytics – Tableau Software. Retrieved March 23, 2017, from https://www.tableau.com/
  42. 42.
    Tzoumas, K., & Metzger, R. (2015). Kafka + Flink: A practical, how-to guide – data Artisans. Retrieved March 23, 2017, from https://data-artisans.com/kafka-flink-a-practical-how-to/

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of South FloridaTampaUSA

Personalised recommendations