Advertisement

Bananas and Plantains (Musa spp.)

  • Allan BrownEmail author
  • Robooni Tumuhimbise
  • Delphine Amah
  • Brigitte Uwimana
  • Moses Nyine
  • Hassan Mduma
  • David Talengera
  • Deborah Karamura
  • Jerome Kuriba
  • Rony Swennen
Chapter

Abstract

Bananas and plantains are one of the most important crops in the world, yet very few hybrids are cultivated. Bananas face considerable pressure from multiple biotic and abiotic stresses, but its genetic improvement is impeded by constraints on seed set due to multiple physiological and reproductive issues. The triploid nature of almost all commercially important bananas requires a complicated breeding scheme involving cross hybridization across ploidy levels and results in poor seed set that reduces the probability of obtaining favorable recombination. The poor seed set is further complicated by issues of parthenocarpy and partial to complete female and male sterility that are not fully understood. While the introduction of genomic resources of this perennial long cycling crop promises to hasten the development of improved cultivars, there is a need to maintain vigorous and committed long-term international breeding programs.

Keywords

Banana Plantain Musa spp. Cavendish Gros Michel Suckering ability Sigatoka Bacterial wilt Heterozygous Banana bunch Association mapping 

Notes

Acknowledgments

This research was undertaken with the support of the Belgium Government, IITA, the Bill and Melinda Gates Foundation, the CGIAR Research Program on Roots, Tubers and Banana (RTB), USAID and HarvestPlus, part of the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH).

References

  1. Adeleke MT, Pillay M, Okoli BE (2004) The relationships between meiotic irregularities and fertility in diploid and triploid Musa L. Cytologia 69:387–393CrossRefGoogle Scholar
  2. Aguilar Morán JF (2013) Improvement of Cavendish banana cultivars through conventional breeding. Acta Hortic 986:205–208CrossRefGoogle Scholar
  3. van Asten PJA, Fermont AM, Taulya G (2011) Drought is a major yield loss factor for rainfed East African highland banana. Agric Water Manag 98:541–552CrossRefGoogle Scholar
  4. Bakry F (2008) Zygotic embryo rescue in bananas. Fruits 63:111–115CrossRefGoogle Scholar
  5. Bakry F, Carreel F, Jenny C, Horry JP (2009) Genetic improvement of banana. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 3–50CrossRefGoogle Scholar
  6. Bhat KV, Jarret RL, Rana RS (1995) DNA profiling of banana and plantain cultivars using random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers. Electrophoresis 16:1736–1745CrossRefPubMedGoogle Scholar
  7. Carreel F, De Leon DG, Lagoda P et al (2002) Ascertaining maternal and paternal lineage within Musa by chloroplast and mitochondrial DNA RFLP analyses. Genome 45:679–692CrossRefPubMedGoogle Scholar
  8. Christelová P, De Langhe E, Hřibová E et al (2017) Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers Conserv 26:801–824Google Scholar
  9. Creste S, Neto AT, Vencovsky R et al (2004) Genetic diversity of Musa diploid and triploid accessions from the Brazilian banana breeding program estimated by microsatellite markers. Genet Resour Crop Evol 51:723–733CrossRefGoogle Scholar
  10. Crossa J, de los Campos G, Pérez P et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713–724CrossRefPubMedPubMedCentralGoogle Scholar
  11. Crouch JH, Crouch HK, Tenkouano A et al (1999) VNTR-based diversity analysis of 2x and 4x full-sib Musa hybrids. Electron J Biotechnol 2:130–139CrossRefGoogle Scholar
  12. Crouch HK, Crouch JH, Madsen S et al (2000) Comparative analysis of phenotypic and genotypic diversity among plantain landraces (Musa spp., AAB group). Theor Appl Genet 101:1056–1065CrossRefGoogle Scholar
  13. D’Hont A, Paget-Goy A, Escoute J et al (2000) The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor Appl Genet 100:177–183CrossRefGoogle Scholar
  14. D’Hont A, Denoeud F, Aury JM et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217CrossRefPubMedGoogle Scholar
  15. Davey MW, Gudimella R, Harikrishna JA et al (2013) A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter-and intra-specific Musa hybrids. BMC Genomics 14:683CrossRefPubMedPubMedCentralGoogle Scholar
  16. De Langhe E (1986) Towards an international strategy for genetic improvement in the genus Musa. In: Persley GJ, De Langhe EA (eds) Banana and plantain breeding strategies. Proceedings of an International Workshop, Cairns, Australia. 1–17 October, 1986. INIBAP, Montpellier, p 19–23Google Scholar
  17. De Langhe E, Vrydaghs L, De Maret P et al (2009) Why bananas matter: an introduction to the history of banana domestication. Ethnobot Res Appl 7:165–177CrossRefGoogle Scholar
  18. De Langhe E, Hribova E, Carpentier S et al (2010) Did backcrossing contribute to the origin of hybrid edible bananas? Ann Bot 106:849–857CrossRefPubMedPubMedCentralGoogle Scholar
  19. Deckers J, Tessera M, Alemu K, Abate T, Swennen R (2001) Ensete. In: Raemaekers RH (ed) Crop production in tropical Africa. DGIC, Brussels, pp 587–591Google Scholar
  20. Dodds KS (1943) The genetic system of banana varieties in relation to banana breeding. Emp J Exp Agric 11:89–98Google Scholar
  21. Dodds KS (1945) Genetical and cytological studies of Musa. VII. Certain aspects of polyploidy. J Genet 46:161–179CrossRefGoogle Scholar
  22. Dumpe BB, Ortiz R (1996) Apparent male fertility in Musa germplasm. HortSci 31:1019–1022Google Scholar
  23. Emediato FL, Nunes FA, Teixeira CC, Passos MA, Bertioli DJ, Pappas GJ, Miller RN (2009) Characterization of resistance gene analogs in Musa acuminata cultivars contrasting in resistance to biotic stresses. In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 443–445Google Scholar
  24. FAO (2014) Banana market review and banana statistics 2012–2013, Rep. I3627E/1/01.14. FAO, Rome. http://www.fao.org/docrep/019/i3627e/i3627e.pdf Google Scholar
  25. Fauré S, Noyer JL, Horry JP et al (1993) A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87:517–526CrossRefPubMedGoogle Scholar
  26. Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 2007:64358PubMedPubMedCentralGoogle Scholar
  27. Fortescue JA, Turner DW (2004) Pollen fertility in Musa: viability in cultivars grown in southern Australia. Aust J Agric Res 55:1085–1091CrossRefGoogle Scholar
  28. Fortescue JA, Turner DW (2011) Reproductive biology. In: Pillay M, Tenkouano A (eds) Banana breeding: constraints and progress. CRC Press, Boca Raton, pp 305–331Google Scholar
  29. Fortescue JA, Turner DW, Romero R (2011) Romero evidence that banana (Musa spp.), a tropical monocotyledon, has a facultative long-day response to photoperiod. Funct Plant Biol 38:867–878CrossRefGoogle Scholar
  30. Hayes B, Goddard M (2010) Genome-wide association and genomic selection in animal breeding. Genome 53:876–883CrossRefPubMedGoogle Scholar
  31. Hippolyte I, Bakry F, Seguin M et al (2010) A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant Biol 10:65CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hippolyte I, Jenny C, Gardes L et al (2012) Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Ann Bot 109:937–951CrossRefPubMedPubMedCentralGoogle Scholar
  33. Iskra-Caruana M, Chabannes M, Duroy PO et al (2014) A possible scenario for the evolution of banana streak virus in banana. Virus Res 186:155–162CrossRefPubMedGoogle Scholar
  34. Janssens SB, Vandelook F, De Langhe E et al (2016) Evolutionary dynamics and biogeography of Musaceae reveal a correlation between the diversification of the banana family and the geological and climatic history of Southeast Asia. New Phytol 210:1453–1465CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jarret RL, Vuylsteke DR, Gawel NJ et al (1993) Detecting genetic diversity in diploid bananas using PCR and primers from a highly repetitive DNA sequence. Euphytica 68:69–76CrossRefGoogle Scholar
  36. Jones DR (ed) (1999) Diseases of banana, abaca’ and enset. CABI, WallingfordGoogle Scholar
  37. Kaemmer D, Fischer D, Jarret RL et al (1997) Molecular breeding in the genus Musa: a strong case for STMS marker technology. Euphytica 96:49–63CrossRefGoogle Scholar
  38. Karamura DA (1998) Numerical taxonomic studies of the East African highland (Musa AAA East Africa) in Uganda. Dissertation, University of ReadingGoogle Scholar
  39. Karamura DA, Karamura EB, Tinzaara W (2012) In: Karamura DA, Karamura EB, Tinzaara W (eds) The current classification and naming of the East African highland bananas (Musa AAA) based on Morphological Characteristics in book: Banana cultivar Names, Synonyms and their Usage. Bioversity International, East Africa, pp 6–23Google Scholar
  40. Karamura D, Kitavi M, Nyine M et al (2016) Genotyping the local banana landrace groups of East Africa. Acta Hortic 1114:67–74CrossRefGoogle Scholar
  41. Kitavi M, Downing T, Lorenzen J et al (2016) The triploid East African Highland Banana (EAHB) genepool is genetically uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation. Theor Appl Genet 129:547–561CrossRefPubMedGoogle Scholar
  42. Krishnamoorthy V, Kumar N (2005) Preliminary evaluation of diploid banana hybrids for yield potential, male fertility and reaction to Radopholus similis. Plant Gen Res Newsl 141:39–43Google Scholar
  43. Kumar LP, Selvarajan R, Iskra-Caruana M, Chabannes M, Hanna R (2015) Biology, etiology, and control of virus diseases of banana and plantain. In: Loebenstein G, Katis NI (eds) Advances in virus research, vol 91. Academic, Burlington, pp 229–269Google Scholar
  44. Lheureux F, Carreel F, Jenny C et al (2003) Identification of genetic markers linked to banana streak disease expression in inter-specific Musa hybrids. Theor Appl Genet 106:594–598CrossRefPubMedGoogle Scholar
  45. Li C, Shao J, Wang Y et al (2013) Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. Cubense. BMC Genomics 14:851CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lorenz AJ, Chao S, Franco G et al (2011) Chap. 2: Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123CrossRefGoogle Scholar
  47. Martin G, Baurens FC, Droc G et al (2016) Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics 17:1–12CrossRefGoogle Scholar
  48. Mbanjo EGN, Tchoumbougnang F, Mouelle AS et al (2012) Development of expressed sequence tags-simple sequence repeats (EST-SSRs) for Musa and their applicability in authentication of a Musa breeding population. Afric J Biotechnol 11:13546–13559Google Scholar
  49. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  50. Miller RNG, Bertioli DJ, Baurens FC et al (2008) Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: isolation, RFLP marker development, and physical mapping. BMC Plant Biol 8:15CrossRefPubMedPubMedCentralGoogle Scholar
  51. Noumbissié GB, Chabannes M, Bakry F et al (2016) Chromosome segregation in an allotetraploid banana hybrid (AAAB) suggests a translocation between the A and B genomes and results in eBSV-free offsprings. Mol Breed 36:1–14CrossRefGoogle Scholar
  52. Noyer JL, Causse S, Tomekpe K et al (2005) A new image of plantain diversity assessed by SSR, AFLP and MSAP markers. Genetica 124:61–69CrossRefPubMedGoogle Scholar
  53. Nyine M, Pillay M (2011) The effect of banana breeding on the diversity of East African Highland banana (Musa, AAA). Acta Hortic 897:225–229CrossRefGoogle Scholar
  54. Nyine M, Uwimana B, Swennen R, Batte M, Brown A, Hřibová E, Doležel J (2016) Genomic breeding approaches for East African Bananas. In: Abstracts of the plant and animal genome conference XXIV January 08–13, San Diego, CAGoogle Scholar
  55. Opara UL, Jacobson D, Al-Saady NA (2010) Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses. J Zhejiang Univ Sci B 11:332–341CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ortiz R (2000) Understanding the Musa genome: an update. Acta Hortic 54:157–168CrossRefGoogle Scholar
  57. Ortiz R (2013) Conventional banana and plantain breeding. Acta Hortic 986:77–194Google Scholar
  58. Ortiz R (2015) Plant breeding in the omics era. Springer, New YorkCrossRefGoogle Scholar
  59. Ortiz R, Swennen R (2014) From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol Adv 32:158–169CrossRefPubMedGoogle Scholar
  60. Ortiz R, Ferris RSB, Vuylsteke DR (1995) Banana and plantain breeding. In: Gowen S (ed) Bananas and plantains. Springer, New York, pp 110–146CrossRefGoogle Scholar
  61. Oselebe HO, Tenkuoano A, Pillay M et al (2006) Ploidy and genome segregation in Musa breeding populations assessed by flow cytometry and randomly amplified polymorphic DNA markers. J Am Soc Hortic 131:780–786Google Scholar
  62. Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55CrossRefGoogle Scholar
  63. Perrier X, De Langhe E, Donohue M, Lentfer C, Vrydaghs L, Bakry F, Carreel F, Hippolyte I, Horry J-P, Jenny C, Lebot V, Risterucci A-M, Tomekpe K, Doutrelepont H, Ball T, Manwaring J, de Maret P, Denham T (2011) Multidisciplinary perspectives on banana (Musa spp.) domestication. PNAS 108:11311–11318CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pillay M, Ogundiwin E, Nwakanma DC et al (2001) Analysis of genetic diversity and relationships in East African banana germplasm. Theor Appl Genet 102:965–970CrossRefGoogle Scholar
  65. Pillay M, Ude G, Kole C (eds) (2012) Genetics, genomics and breeding of bananas. CRC, Boca RatonGoogle Scholar
  66. Raboin LM, Carreel F, Noyer JL et al (2005) Diploid ancestors of triploid export banana cultivars: molecular identification of 2n restitution gamete donors and n gamete donors. Mol Breed 16:333–341CrossRefGoogle Scholar
  67. Risterucci AM, Hippolyte I, Perrier X et al (2009) Development and assessment of diversity arrays technology for high-throughput DNA analyses in Musa. Theor Appl Genet 119:1093–1103CrossRefPubMedGoogle Scholar
  68. Roux NS (2001) Mutation induction in Musa. In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutations. Science, EnfieldGoogle Scholar
  69. Rowe P, Rosale F (1993) Diploid breeding at FHIA and the development of Goldfinger (FHIA-01). InfoMusa 2:9–11Google Scholar
  70. Sardos J, Rouard M, Hueber Y et al (2016) A genome-wide association study on the seedless phenotype in banana (Musa spp.) reveals the potential of a selected panel to detect candidate genes in a vegetatively propagated crop. PLoS One 11:5CrossRefGoogle Scholar
  71. Sathiamoorthy S, Rao VNM (1980) Pollen production in relation to genome and ploidy in banana clones. Proc Nat Semi Banana Prod. Tech., TNAU, Coimbatore, pp 65–66Google Scholar
  72. Shepherd K (1999) Cytogenetics of the genus Musa. International Network for the Improvement of Banana and Plantain, MontpellierGoogle Scholar
  73. Silva PRO, de Jesus ON, Bragança CAD et al (2016) Development of a thematic collection of Musa spp accessions using SCAR markers for preventive breeding against Fusarium oxysporum f. sp cubense tropical race 4. Genet Mol Res 15:5017765Google Scholar
  74. Simmonds NW (1962) The evolution of the bananas. Longmans, LondonGoogle Scholar
  75. Simmonds NW (1966) Bananas, 2nd edn. Longmans, LondonGoogle Scholar
  76. Simmonds NW (1987) Classification and breeding of bananas. In: Persley G, De Langhe E (eds) Banana and plantain breeding strategies. Proceedings of an International Workshop held at Cairns Australia, 13–17 October 1986. Austrailian Centre for International Agricultural Research, CanberraGoogle Scholar
  77. Simmonds NW, Shepherd K (1955) The taxonomy and origins of the cultivated bananas. J Linn Soc Lond Bot 55:302–312CrossRefGoogle Scholar
  78. Ssebuliba R, Vuylsteke D, Hartman J et al (2000) Towards improving highland bananas. Uganda J Agric Sci 5:36–38Google Scholar
  79. Ssesuliba RN, Tenkouano A, Pillay M (2008) Male fertility and occurrence of 2n gametes in East African highland bananas (Musa spp.) Euphytica 164:153–162Google Scholar
  80. Stover RH, Buddenhagen IW (1986) Banana breeding: polyploidy, disease resistance and productivity. Fruits 41:175–191Google Scholar
  81. Stover RH, Simmonds NW (1987) Bananas, Tropical agricultural series, 3rd edn. Longmans, LondonGoogle Scholar
  82. Swennen R, Vuylsteke D (1993) Breeding black Sigatoka resistant plantain with a wild banana. Trop Agric 70:74–77Google Scholar
  83. Tenkouano A, Swennen R (2004) Progress in breeding and delivering improved plantain and banana to African farmers. Chron Hortic 44:9–15Google Scholar
  84. Tenkouano A, Crouch JH, Crouch HK et al (1999) Comparison of DNA marker and pedigree-based methods of genetic analysis of plantain and banana (Musa spp.) clones. I. Estimation of genetic relationships. Theor Appl Genet 98:62–68CrossRefGoogle Scholar
  85. Tenkouano A, Vuylsteke D, Okoro J et al (2003) Registration of TMB2x5105-1 and TMB2x9128-3 diploid banana hybrids with good combining ability, partial resistance to black Sigatoka and resistance to nematodes. Hortscience 38:468–472Google Scholar
  86. Tenkouano A, Pillay M, Ortiz R (2011) Breeding techniques. In: Pillay M, Tenkouano A (eds) Banana breeding: constraints and progress. CRC Press, Boca Raton, pp 181–202CrossRefGoogle Scholar
  87. Tenkouano A, Ortiz R, Vuylsteke D (2012) Estimating genetic effects in maternal and paternal half-sibs from tetraploid-diploid crosses in Musa spp. Euphytica 185:295–301CrossRefGoogle Scholar
  88. Tripathi JN, Muwonge A, Tripathi L (2012) Efficient regeneration and transformation of plantain cv. ‘Gonja manjaya’ (Musa spp. AAB) using embryogenic cell suspensions. In Vitro Cell Dev Biol 48:216–224CrossRefGoogle Scholar
  89. Tsegaye A, Struik PC (2002) Analysis of enset (Ensete ventricosum) indigenous production methods and farm-based biodiversity in major enset-growing regions of southern Ethiopia. Explor Agric 38:291–315Google Scholar
  90. Tushemereirwe W, Batte M, Nyine M, Tumuhimbise R, Barekye A, Tendo S, Talengera D, Kubiriba J, Lorenzen J, Swennen R, Uwimana B (2015) Performance of NARITA banana hybrids in the preliminary yield trial for three cycles in Uganda. Banana Technical Report, 35p. www.musalit.org/seeMore.php?id=15482
  91. Ude G, Pillay M, Nwakanma D et al (2002) Genetic diversity in Musa acuminata Colla and Musa balbisiana Colla and some of their natural hybrids using AFLP markers. Theor Appl Genet 104:1246–1252CrossRefPubMedGoogle Scholar
  92. Ude G, Pillay M, Ogundiwin E et al (2003) Genetic diversity in an African plantain core collection using AFLP and RAPD markers. Theor Appl Genet 107:248–255CrossRefPubMedGoogle Scholar
  93. Uma S, Lakshmi S, Saraswathi MS et al (2011) Embryo rescue and plant regeneration in banana (Musa spp.) plant cell. Tissue Organ Cult 105:105–111CrossRefGoogle Scholar
  94. Umber M, Pichaut JP, Farinas B et al (2016) Marker-assisted breeding of Musa balbisiana genitors devoid of infectious endogenous banana streak virus sequences. Mol Breed 36:1–11CrossRefGoogle Scholar
  95. Vakili NG (1968) Responses of Musa acuminata species and edible cultivars to infection by Mycosphaerella musicola. Trop Agric 45:13–22Google Scholar
  96. Valdez-Ojeda R, James-Kay A, Ku-Cauich JR et al (2014) Genetic relationships among a collection of Musa germplasm by fluorescent-labeled SRAP. Tree Genet Genomic 10:465–476CrossRefGoogle Scholar
  97. Van den Houwe I, De Smet K, Tezenas de Montcel H et al (1995) Variability in storage potential of banana shoot cultures under medium term storage conditions. Plant Cell Tissue Organ Cult 42:269–274CrossRefGoogle Scholar
  98. Vuylsteke D, Swennen R, Ortiz R (1993) Development and performance of Black Sigatoka-resistant tetraploid hybrids of plantain (Musa spp., AAB group). Euphytica 65:33–42CrossRefGoogle Scholar
  99. Wairegi LWI, van Asten PJA, Tenywa MM et al (2010) Abiotic constraints override biotic constraints in East African highland banana systems. Field Crop Res 117:146–153CrossRefGoogle Scholar
  100. Wang XL, Chiang TY, Roux N et al (2007) Genetic diversity of wild banana (Musa balbisiana Colla) in China as revealed by AFLP markers. Genet Resour Crop Evol 54:11251132Google Scholar
  101. Wang W, Hu Y, Sun D et al (2012) Identification and evaluation of two diagnostic markers linked to Fusarium wilt resistance (race 4) in banana (Musa spp.) Mol Biol Rep 39:451–459CrossRefPubMedGoogle Scholar
  102. Wei JY, Liu DB, Wei SX et al (2011) Analysis of genetic diversity in banana cultivars (Musa spp.) using sequence-related amplified polymorphism markers. Acta Hortic 897:263–265CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Allan Brown
    • 1
    Email author
  • Robooni Tumuhimbise
    • 2
  • Delphine Amah
    • 3
  • Brigitte Uwimana
    • 4
  • Moses Nyine
    • 4
  • Hassan Mduma
    • 1
  • David Talengera
    • 5
  • Deborah Karamura
    • 6
  • Jerome Kuriba
    • 2
  • Rony Swennen
    • 1
  1. 1.International Institute of Tropical AgricultureArushaTanzania
  2. 2.National Agricultural Research OrganizationKampalaUganda
  3. 3.International Institute of Tropical AgricultureIbadanNigeria
  4. 4.International Institute of Tropical AgricultureKampalaUganda
  5. 5.National Agricultural Research LaboratoriesKampalaUganda
  6. 6.Bioversity InternationalKampalaUganda

Personalised recommendations