Advertisement

On Finding the Optimal BDD Relaxation

  • David Bergman
  • Andre Augusto CireEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10335)

Abstract

This paper presents an optimization model for identifying limited-width relaxed binary decision diagrams (BDDs) with tightest possible relaxation bounds. The model developed is a network design model and is used to identify which nodes and arcs should be in a relaxed BDD so that the objective function bound is as close to the optimal value as possible. The model is presented specifically for the 0–1 knapsack problem, but can be extended to other problem classes that have been investigated in the stream of research on using decision diagrams for combinatorial optimization problems. Preliminary experimental results indicate that the bounds provided by the relaxed BDDs are far superior to the bounds achieved by relaxed BDDs constructed via previously published compilation algorithms.

References

  1. 1.
    Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 27, 509–516 (1978)CrossRefzbMATHGoogle Scholar
  2. 2.
    Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74970-7_11. http://dx.doi.org/10.1007/978-3-540-74970-7_11 CrossRefGoogle Scholar
  3. 3.
    Behle, M.: On threshold BDDs and the optimal variable ordering problem. J. Comb. Optim. 16(2), 107–118 (2007). http://dx.doi.org/10.1007/s10878-007-9123-z MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bergman, D., Cire, A.A., van Hoeve, W.J.: MDD propagation for sequence constraints. J. Artif. Intell. Res. 50, 697–722 (2014). http://dx.doi.org/10.1613/jair.4199 MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the application of BDDs to the maximum independent set problem. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29828-8_3 CrossRefGoogle Scholar
  6. 6.
    Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Optimization bounds from binary decision diagrams. INFORMS J. Comput. 26(2), 253–268 (2014). http://dx.doi.org/10.1287/ijoc.2013.0561 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.: Decision Diagrams for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, 1st edn. Springer, Switzerland (2016)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bergman, D., Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21311-3_5. http://dx.doi.org/10.1007/978-3-642-21311-3_5 CrossRefGoogle Scholar
  10. 10.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, 4th edn. Athena Scientific, Belmont (2012)zbMATHGoogle Scholar
  11. 11.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Comput. 35, 677–691 (1986)CrossRefzbMATHGoogle Scholar
  12. 12.
    Bryant, R.E.: Symbolic boolean manipulation with ordered binary decision diagrams. ACM Comput. Surv. 24, 293–318 (1992)CrossRefGoogle Scholar
  13. 13.
    Drechsler, R., Drechsler, N., Günther, W.: Fast exact minimization of BDD’s. IEEE Trans. CAD Integr. Circ. Syst. 19(3), 384–389 (2000). http://dx.doi.org/10.1109/43.833206 CrossRefGoogle Scholar
  14. 14.
    Felt, E., York, G., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Dynamic variable reordering for BDD minimization. In: Proceedings of the European Design Automation Conference 1993, EURO-DAC 1993 with EURO-VHDL 1993, Hamburg, Germany, 20–24 September 1993. pp. 130–135. IEEE Computer Society (1993). http://dx.doi.org/10.1109/EURDAC.1993.410627
  15. 15.
    Gogate, V., Domingos, P.M.: Approximation by quantization. CoRR abs/1202.3723 (2012). http://arxiv.org/abs/1202.3723
  16. 16.
    Gogate, V., Domingos, P.M.: Structured message passing. In: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, UAI 2013, Bellevue, WA, USA, 11–15 August 2013 (2013). https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2386&proceeding_id=29
  17. 17.
    Günther, W., Drechsler, R.: Linear transformations and exact minimization of BDDs. In: 8th Great Lakes Symposium on VLSI (GLS-VLSI 1998), 19–21 February 1998, Lafayette, LA, USA, pp. 325–330. IEEE Computer Society (1998). http://dx.doi.org/10.1109/GLSV.1998.665287
  18. 18.
    Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85958-1_30 CrossRefGoogle Scholar
  19. 19.
    Hoda, S., Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15396-9_23. http://dl.acm.org/citation.cfm?id=1886008.1886034 CrossRefGoogle Scholar
  20. 20.
    Kirlik, G., Sayın, S.: A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232(3), 479–488 (2014). http://www.sciencedirect.com/science/article/pii/S0377221713006474 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Syst. Tech. J. 38, 985–999 (1959)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shiple, T.R., Hojati, R., Sangiovanni-Vincentelli, A.L., Brayton, R.K.: Heuristic minimization of BDDs using don’t cares. In: DAC, pp. 225–231 (1994). http://doi.acm.org/10.1145/196244.196360
  23. 23.
    Soeken, M., Große, D., Chandrasekharan, A., Drechsler, R.: BDD minimization for approximate computing. In: 21st Asia and South Pacific Design Automation Conference, ASP-DAC 2016, Macao, Macao, 25–28 January 2016, pp. 474–479. IEEE (2016). http://dx.doi.org/10.1109/ASPDAC.2016.7428057
  24. 24.
    St-Aubin, R., Hoey, J., Boutilier, C.: APRICODD: approximate policy construction using decision diagrams. In: Proceedings of Conference on Neural Information Processing Systems, pp. 1089–1095 (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Operations and Information ManagementUniversity of ConnecticutMansfieldUSA
  2. 2.Department of ManagementUniversity of Toronto ScarboroughTorontoUSA

Personalised recommendations