The Nemhauser-Trotter Reduction and Lifted Message Passing for the Weighted CSP

  • Hong XuEmail author
  • T. K. Satish Kumar
  • Sven Koenig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10335)


We study two important implications of the constraint composite graph (CCG) associated with the weighted constraint satisfaction problem (WCSP). First, we show that the Nemhauser-Trotter (NT) reduction popularly used for kernelization of the minimum weighted vertex cover (MWVC) problem can also be applied to the CCG of the WCSP. This leads to a polynomial-time preprocessing algorithm that fixes the optimal values of a large subset of the variables in the WCSP. Second, belief propagation (BP) is a well-known technique used for solving many combinatorial problems in probabilistic reasoning, artificial intelligence and information theory. The min-sum message passing (MSMP) algorithm is a simple variant of BP that has also been successfully employed in several research communities. Unfortunately, the MSMP algorithm has met with little success on the WCSP. We revive the MSMP algorithm for solving the WCSP by applying it on the CCG of a given WCSP instance instead of its original form. We refer to this new MSMP algorithm as the lifted MSMP algorithm for the WCSP. We demonstrate the effectiveness of our algorithms through experimental evaluations.



The research at the University of Southern California was supported by the National Science Foundation (NSF) under grant numbers 1409987 and 1319966. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the sponsoring organizations, agencies or the U.S. government.


  1. 1.
    Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-based CSPs and valued CSPs: frameworks, properties, and comparison. Constraints 4(3), 199–240 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21, 135–191 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  4. 4.
    Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gurobi Optimization Inc.: Gurobi optimizer reference manual (2016).
  6. 6.
    Hurley, B., O’Sullivan, B., Allouche, D., Katsirelos, G., Schiex, T., Zytnicki, M., de Givry, S.: Multi-language evaluation of exact solvers in graphical model discrete optimization. Constraints 21(3), 413–434 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  8. 8.
    Kolmogorov, V.: Primal-dual algorithm for convex markov random fields. Technical report, MSR-TR-2005-117, Microsoft Research (2005)Google Scholar
  9. 9.
    Kumar, T.K.S.: A framework for hybrid tractability results in boolean weighted constraint satisfaction problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 282–297. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85958-1_19 CrossRefGoogle Scholar
  10. 10.
    Kumar, T.K.S.: Lifting techniques for weighted constraint satisfaction problems. In: the International Symposium on Artificial Intelligence and Mathematics (2008)Google Scholar
  11. 11.
    Kumar, T.K.S.: Kernelization, generation of bounds, and the scope of incremental computation for weighted constraint satisfaction problems. In: The International Symposium on Artificial Intelligence and Mathematics (2016)Google Scholar
  12. 12.
    Mézard, M., Montanari, A.: Information, Physics, and Computation. Oxford University Press, New York (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Mézard, M., Zecchina, R.: Random \(k\)-satisfiability problem: from an analytic solution to an efficient algorithm. Phys. Rev. E 66(5), 056126 (2002)CrossRefGoogle Scholar
  14. 14.
    Moallemi, C.C., Roy, B.V.: Convergence of min-sum message-passing for convex optimization. IEEE Trans. Inf. Theor. 56(4), 2041–2050 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Montanari, A., Ricci-Tersenghi, F., Semerjian, G.: Solving constraint satisfaction problems through belief propagation-guided decimation. In: The Annual Allerton Conference, pp. 352–359 (2007)Google Scholar
  16. 16.
    Nemhauser, G.L., Trotter, L.E.: Vertex packings: structural properties and algorithms. Math. Program. 8(1), 232–248 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Siek, J., Lee, L.Q., Lumsdain, A.: The Boost Graph Library: User Guide and Reference Manual. Addison-Wesley, Boston (2002)Google Scholar
  18. 18.
    Weigt, M., Zhou, H.: Message passing for vertex covers. Phys. Rev. E 74(4), 046110 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Xu, H., Kumar, T.K.S., Koenig, S.: A new solver for the minimum weighted vertex cover problem. In: Quimper, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 392–405. Springer, Cham (2016). doi: 10.1007/978-3-319-33954-2_28 Google Scholar
  20. 20.
    Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. Exploring Artif. Intell. New Millennium 8, 236–239 (2003)Google Scholar
  21. 21.
    Zytnicki, M., Gaspin, C., Schiex, T.: DARN! A weighted constraint solver for RNA motif localization. Constraints 13(1), 91–109 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations