A Distributed Optimization Method for the Geographically Distributed Data Centres Problem

  • Mohamed Wahbi
  • Diarmuid Grimes
  • Deepak Mehta
  • Kenneth N. Brown
  • Barry O’Sullivan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10335)


The geographically distributed data centres problem (GDDC) is a naturally distributed resource allocation problem. The problem involves allocating a set of virtual machines (VM) amongst the data centres (DC) in each time period of an operating horizon. The goal is to optimize the allocation of workload across a set of DCs such that the energy cost is minimized, while respecting limitations on data centre capacities, migrations of VMs, etc. In this paper, we propose a distributed optimization method for GDDC using the distributed constraint optimization (DCOP) framework. First, we develop a new model of the GDDC as a DCOP where each DC operator is represented by an agent. Secondly, since traditional DCOP approaches are unsuited to these types of large-scale problem with multiple variables per agent and global constraints, we introduce a novel semi-asynchronous distributed algorithm for solving such DCOPs. Preliminary results illustrate the benefits of the new method.


Virtual Machine Constraint Satisfaction Problem Hard Constraint Total Energy Cost Concurrent Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    America’s Data Centres Consuming and Wasting Growing Amounts of Energy (2015).
  2. 2.
  3. 3.
    Armstrong, A.A., Durfee, E.H.: Dynamic prioritization of complex agents in distributed constraint satisfaction problems. In: Proceedings of AAAI 1997/IAAI 1997, pp. 822–822 (1997)Google Scholar
  4. 4.
    Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data centers. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pp. 826–831. IEEE Computer Society (2010)Google Scholar
  5. 5.
    Bessiere, C., Brito, I., Gutierrez, P., Meseguer, P.: Global constraints in distributed constraint satisfaction and optimization. Comput. J. 57(6), 906–923 (2013)CrossRefGoogle Scholar
  6. 6.
    Bessiere, C., Maestre, A., Brito, I., Meseguer, P.: Asynchronous backtracking without adding links: a new member in the ABT family. Artif. Intell. 161, 7–24 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bonnet-Torrés, O., Tessier, C.: Multiply-constrained DCOP for distributed planning and scheduling. In: AAAI Spring Symposium: Distributed Plan and Schedule Management, pp. 17–24 (2006)Google Scholar
  8. 8.
    Brito, I., Meisels, A., Meseguer, P., Zivan, R.: Distributed constraint satisfaction with partially known constraints. Constraints 14, 199–234 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Burke, D.A., Brown, K.N.: Efficient handling of complex local problems in distributed constraint optimization. In: Proceedings of ECAI 2006, Riva del Garda, Italy, pp. 701–702 (2006)Google Scholar
  10. 10.
    Chechetka, A., Sycara, K.: No-commitment branch and bound search for distributed constraint optimization. In: Proceedings of AAMAS 2006, pp. 1427–1429 (2006)Google Scholar
  11. 11.
    Faltings, B., Yokoo, M.: Editorial: introduction: special issue on distributed constraint satisfaction. Artif. Intell. 161(1–2), 1–5 (2005)CrossRefGoogle Scholar
  12. 12.
    Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward-bounding for distributed constraints optimization. In: Proceedings of ECAI 2006, pp. 103–107 (2006)Google Scholar
  13. 13.
    Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward-bounding for distributed COPs. JAIR 34, 61–88 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14(3), 263–313 (1980)CrossRefGoogle Scholar
  15. 15.
    Hirayama, K., Yokoo, M.: Distributed partial constraint satisfaction problem. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 222–236. Springer, Heidelberg (1997). doi: 10.1007/BFb0017442 CrossRefGoogle Scholar
  16. 16.
    Hirayama, K., Yokoo, M.: The distributed breakout algorithms. Artif. Intell. 161, 89–116 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Léauté, T., Faltings, B.: Coordinating logistics operations with privacy guarantees. In: Proceedings of the IJCAI 2011, pp. 2482–2487 (2011)Google Scholar
  18. 18.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Series (1997)Google Scholar
  19. 19.
    Maestre, A., Bessiere, C.: Improving asynchronous backtracking for dealing with complex local problems. In: Proceedings of ECAI 2004, pp. 206–210 (2004)Google Scholar
  20. 20.
    Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking DCOP to the real world: efficient complete solutions for distributed multi-event scheduling. In: Proceedings of AAMAS 2004, Washington, DC, USA, pp. 310–317. IEEE Computer Society (2004)Google Scholar
  21. 21.
    Meisels, A., Zivan, R.: Asynchronous forward-checking for DisCSPs. Constraints 12(1), 131–150 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Miller, S., Ramchurn, S.D., Rogers, A.: Optimal decentralised dispatch of embedded generation in the smart grid. In: Proceedings of AAMAS 2012, pp. 281–288. International Foundation for Autonomous Agents and Multiagent Systems (2012)Google Scholar
  23. 23.
    Modi, P.J., Shen, W.-M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed constraint optimization with quality guarantees. Artif. Intell. 161, 149–180 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Petcu, A., Faltings, B.: A value ordering heuristic for local search in distributed resource allocation. In: Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS, vol. 3419, pp. 86–97. Springer, Heidelberg (2005). doi: 10.1007/11402763_7 CrossRefGoogle Scholar
  25. 25.
    Petcu, A., Boi Faltings, D.: A scalable method for multiagent constraint optimization. In: Proceedings of IJCAI 2005, pp. 266–271 (2005)Google Scholar
  26. 26.
    Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016)Google Scholar
  27. 27.
    Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., Maggs, B.: Cutting the electric bill for internet-scale systems. In: ACM SIGCOMM Computer Communication Review, vol. 39, pp. 123–134. ACM (2009)Google Scholar
  28. 28.
    Rahman, A., Liu, X., Kong, F.: A survey on geographic load balancing based data center power management in the smart grid environment. IEEE Commun. Surv. Tutorials 16(1), 214–233 (2014)CrossRefGoogle Scholar
  29. 29.
    Rao, L., Liu, X., Xie, L., Liu, W.: Minimizing electricity cost: optimization of distributed internet data centers in a multi-electricity-market environment. In: INFOCOM, 2010 Proceedings IEEE, pp. 1–9. IEEE (2010)Google Scholar
  30. 30.
    Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of AAAI 1994, pp. 362–367 (1994)Google Scholar
  31. 31.
    Van Hentenryck, P., Deville, Y., Teng, C.-M.: A generic arc-consistency algorithm and its specializations. Artif. Intell. 57(2–3), 291–321 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wahbi, M., Brown, K.N.: Global constraints in distributed CSP: concurrent GAC and explanations in ABT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 721–737. Springer, Cham (2014). doi: 10.1007/978-3-319-10428-7_52 Google Scholar
  33. 33.
    Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: DisChoco 2: a platform for distributed constraint reasoning. In: Proceedings of Workshop on DCR 2011, pp. 112–121 (2011)Google Scholar
  34. 34.
    Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: Nogood-based asynchronous forward-checking algorithms. Constraints 18(3), 404–433 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wallace, R.J., Freuder, E.C.: Constraint-based reasoning and privacy/efficiency tradeoffs in multi-agent problem solving. Artif. Intell. 161, 209–228 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm. J. Artif. Intell. Res. (JAIR) 38, 85–133 (2010)zbMATHGoogle Scholar
  37. 37.
    Yokoo, M.: Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-agent Systems. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  38. 38.
    Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satisfaction for formalizing distributed problem solving. In: Proceedings of 12th IEEE International Conference on Distributed Computing Systems, pp. 614–621 (1992)Google Scholar
  39. 39.
    Yokoo, M., Hirayama, K.: Distributed constraint satisfaction algorithm for complex local problems. In: International Conference on Multi Agent Systems, pp. 372–379 (1998)Google Scholar
  40. 40.
    Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. Artif. Intell. 161, 55–87 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zivan, R., Meisels, A.: Synchronous vs Asynchronous search on DisCSPs. In: Proceedings of EUMAS 2003 (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mohamed Wahbi
    • 1
  • Diarmuid Grimes
    • 1
  • Deepak Mehta
    • 1
  • Kenneth N. Brown
    • 1
  • Barry O’Sullivan
    • 1
  1. 1.Insight Centre for Data Analytics, School of Computer Science and ITUniversity College CorkCorkIreland

Personalised recommendations