Advertisement

Predicting Trust in Wikipedia’s Vote Network Using Social Networks measures

  • J. David Nuñez-Gonzalez
  • Manuel GrañaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10338)

Abstract

Predicting trust is an emerging topic in Social Networks research area. This problem tries to guess wheter an actor should trust another actor or not. The information used for this prediction can be extracted from different sources, such as the user profile, information extracted from the Web of Trust (WoT). The WoT contains the user explicit trust declarations about trust and distrust opinions about other actors (trustees). We propose a trust prediction experiment building features based on social networks measures to train different classifiers. Those features are extracted from the involved actors.

References

  1. 1.
    Abassi, R., El Fatmi, S.G.: Towards a generic trust management model. In: 2012 19th International Conference on Telecommunications (ICT), pp. 1–6 (April 2012)Google Scholar
  2. 2.
    Chadwick, D.W., Young, A.J., Cicovic, N.K.: Merging and extending the PGP and PEM trust models-the ICE-TEL trust model. IEEE Netw. 11(3), 16–24 (1997)CrossRefGoogle Scholar
  3. 3.
    Fachrunnisa, O., Hussain, F.K.: A methodology for maintaining trust in industrial digital ecosystems. IEEE Trans. Ind. Electron. 60(3), 1042–1058 (2013)CrossRefGoogle Scholar
  4. 4.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry, pp. 35–41 (1977)Google Scholar
  5. 5.
    Golbeck, J.: Computing with trust: denition, properties, and algorithms. In: Securecomm and Workshops, 2006, pp. 1–7, 28 2006 September 1 2006Google Scholar
  6. 6.
    Graña, M., Nuñez-Gonzalez, J.D., Ozaeta, L., Kaminska-Chuchmala, A.: Experiments of trust prediction in social networks by articial neural networks. Cybern. Syst. 46, 19–34 (2015). (cited By 4)CrossRefGoogle Scholar
  7. 7.
    Graña, M., Nuñez-Gonzalez, J.D., Apolloni, B.: A discussion on trust requirements for a social network of eahoukers. In: Pan, J.-S., Polycarpou, M.M., Woźniak, M., Carvalho, A.C.P.L.F., Quintián, H., Corchado, E. (eds.) HAIS 2013. LNCS, vol. 8073, pp. 540–547. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40846-5_54 CrossRefGoogle Scholar
  8. 8.
    Josang, A., Ismail, R., Boyd, C.A.: A survey of trust and reputation systems for online service provision. Decis. Support Syst. 43(2), 618–644 (2007)CrossRefGoogle Scholar
  9. 9.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. Proceedings of the 19th International Conference on World Wide Web. WWW 2010, pp. 641–650. ACM, New York (2010)Google Scholar
  10. 10.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI 2010, pp. 1361–1370. ACM, New York (2010)Google Scholar
  11. 11.
    Masias, V.H., Valle, M., Morselli, C., Crespo, F., Vargas, A., Laengle, S.: Modeling verdict outcomes using social network measures: the watergate and caviar network cases. PloS One 11(1), 1–24 (2016)CrossRefGoogle Scholar
  12. 12.
    Nuñez-Gonzalez, J.D., Graña, M.: On the effect of high order reputation information on trust prediction in wikipedia’s vote network, pp. 59–62, cited By 0 (2014)Google Scholar
  13. 13.
    Nuñez-Gonzalez, J.D., Graña, M.: Graph-based learning on sparse data for recommendation systems in social networks. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, F.J., Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9108, pp. 61–68. Springer, Cham (2015). doi: 10.1007/978-3-319-18833-1_7 CrossRefGoogle Scholar
  14. 14.
    Nuñez-Gonzalez, M., Graña, J.D., Apolloni, B.: Reputation features for trust prediction in social networks. Neurocomputing 166, 17 (2015). (cited By 2)Google Scholar
  15. 15.
    Viriyasitavat, W., Martin, A.: A survey of trust in workows and relevant contexts. IEEE Commun. Surv. Tutor. 14(3), 911–940 (2012)Google Scholar
  16. 16.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  17. 17.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world”networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computational Intelligence GroupUPV-EHUSan SebastianSpain

Personalised recommendations